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Abstract

A dependent edge in an acyclic orientation of a graph i1s one whose reversal
creates a directed cycle. In answer to a question of Erdds, Fisher et al. [5] define
dmin(G) to be the minimum number of dependent edges of a graph G, where the
minimum is taken over all acyclic orientations of &, and also ry, ; as the supre-
mum of the ratio dpin(G)/e(G), where e(G) is the number of edges in G and the
supremum is taken over all graphs G with chromatic number m and girth k. They
show that r,, , < ng—zl and ra 4 > 21—0. We show that 754 > %,r674 > %6, and
T4 > % and that the Mycielski construction on a triangle-free graph with at least
one dependent edge yields a graph with at least 3 dependent edges. In addition,
we give an alternative proof of the answer to Erdds’s question, based on Tysdal [6]

and Youngs [7].

1 Introduction

In every acyclic orientation of a triangle, there is one edge that can be reversed to make
the triangle a directed cycle. Define a dependent edge in an acyclic orientation of a
graph to be one whose reversal creates a directed cycle. Paul Erdds asked [1] if every
graph with girth at least 4 can be given an acyclic orientation with no dependent edge.
Such a graph would be a cover graph, i.e., the Hisse diagram of a partially ordered set.
There are infinitely many graphs for which the answer is yes. It is well known that if the
chromatic number of graph G is strictly less than its girth, then G has an orientation
with no dependent edges (see, for example, [4]). The argument goes as follows: color
the vertices of G with colors {1,2,3,...,x(G)}, and orient each edge from its lower-
numbered vertex to its higher-numbered vertex. It is easy to check that this is an acyclic
orientation, and, since the girth of GG is greater than the chromatic number, every cycle
of G will have at least two edges in each direction.



The answer in general, however, is no. There are infinitely many graphs for which
every acyclic orientation has at least one dependent edge. In 1997 Fisher, et. al. [5]
gave a proof that the Grotzsch graph (see Figure 1) always has at least one dependent
edge in every acyclic orientation. (In some papers, the Grétzsch graph is also called the
Mycielski graph, see, for example, [3].) Thus, every graph that contains the Grotzsch
graph as a subgraph always has at least one dependent edge in every acyclic orientation.

Tysdal [6] recently observed that a 1996 proof by Youngs [7] of the fact that every
non-bipartite graph that can be quadrilaterally embedded on the projective plane cannot
be 3-colorable implies that every such graph has a dependent edge in every acyclic
orientation. The Grétzsch graph is one such example, see Figure 2 for its embedding on
the projective plane. In section 2, we give the proof that the Grétzsch graph always has
at least one dependent edge using the ideas of Youngs’ proof. In addition, Tysdal has
shown that when applied to any odd cycle, the Mycielski construction (defined precisely
in Section 2), yields a graph in which every acyclic orientation has a dependent edge.
These graphs all have chromatic number 4 and girth 4, while quadrilateral embeddings
on the projective plane that are not bipartite have chromatic number bounded between
4 and 6, and girth either 3 or 4.

Figure 1: An Acyclic Orientation of the Grétzsch Graph with One Dependent Edge

Given that there are some graphs for which every acyclic orientation has dependent
edges, Fisher et al. ask what is the minimum percentage of dependent edges that a given
graph can have in any acyclic orientation. They suggested looking at the supremum of
this ratio, where the supremum is taken over the class of graphs having fixed chromatic
number and girth. If din(G) is the minimum number of dependent edges of a graph
G/, where the minimum is taken over all acyclic orientations of G, and r, j is the
supremum of the ratio dpin(G)/e(G), where the supremum is taken over all graphs
G with chromatic number m and girth k£, then by the argument above, r;; = 0 if



j < k. Figure 1 shows an acyclic orientation of M, the Grétzsch graph, with exactly
one dependent edge. In this figure, the edge (e, d) is dependent in the 4-cycle eded'.
Since [5] showed that dmin(M) > 1, this orientation yields duyin(M) = 1, and hence
r4,4 > 1/20. Whether or not r4 4 = 1/20 is still open.

Fisher et al. also showed that for all m and k, r,, 1 < (m —2)/m. In this paper
we prove that rs4 > 74—1, re4 > %, and r74 > % by analyzing iterations of the
Mycielski construction. We also show that if we start with a triangle-free graph &
with the property that every acyclic orientation has at least 1 dependent edge, then the
Myecielski construction on G yields a graph for which every acyclic orientation has at

least 3 dependent edges.

2 Graphs on the Projective Plane

Recall the following construction of Mycielski. Graph definitions and terminology will
follow [2]. Given a graph (7, construct a new graph M (G) in the following way. For each
vertex v € V(G), add a corresponding vertex v', and make v’ adjacent to v € V(G) only
if v is adjacent to w in . (Thus the neighbors of a new vertex are the neighbors in G' of
the original vertex to which it corresponds.) Now add an extra vertex z, and connect it
to each of the other new vertices. This graph will have the following useful properties:
the chromatic number of M (G) will be one more than the chromatic number of ¢, and
if G has no triangles, then neither does M (G'). Also, if G is connected, then so is M (G).

Thus M(C5) is constructed by starting with a pentagon, adding five new vertices,
each of whom gets two neighbors from the original pentagon, and then adding an extra
vertex adjacent to the new five.

Theorem 2.1. FEvery acyclic orientation of the Mycielskian M (Cs) has at least one
dependent edge.

Proof. The idea for this proof comes from Youngs [7]. This graph contains ten 4-cycles.
If it is possible to give this graph an acyclic orientation with no dependent edges, then
none of the 4-cycles will be directed, and switching the direction of any edge will not
cause any of the 4-cycles to become directed. In other words, each 4-cycle must have
two edges oriented clockwise and two edges oriented counter-clockwise.

We can embed this graph on the projective plane in order to get a better view of
what is happening with the 4-cycles. See Figure 2. Vertices a through e appear twice
in our drawing due to the nature of the projective plane, but are really identical. The
other vertices (those on the “inside” of our drawing) appear only once.

All ten 4-cycles are now faces, and all the faces are 4-cycles.

Suppose it is possible to give this graph an acyclic orientation with no dependent
edges. Given such an orientation, let us give each edge within a 4-cycle a 41 or -1 value:
+1 if the edge is oriented clockwise within that 4-cycle, and -1 if the edge is oriented
counter-clockwise within the 4-cycle. Now each 4-cycle can be given a numerical value,
namely the sum of the values of its edges. The possible values of a 4-cycle are -4, -2, 0,



Figure 2: The Grotzsh Graph Viewed on the Projective Plane

2 and 4. Because of the orientation that we gave the graph, we know that each 4-cycle
must have two edges going in each direction. In other words, the value of each 4-cycle
must be zero. We will now show that this cannot happen.

If the value of each 4-cycle were zero, then we would have Y N(F) = 0, where F'is
a 4-cycle, N(x) is the value of the cycle *, and the sum is taken over all 4-cycles in the
graph. Let us now consider how each edge in the graph contributes to this sum. Each
of the edges appears in two 4-cycles, and hence gets counted twice.

First consider the edges that appear once in our drawing (those on the inside). Each
of these edges gets counted once as going clockwise and once as going counter-clockwise.
Thus each such edge contributes zero to the sum.

Edges that appear twice in our drawing (those on the outside,) get counted both
times in the same direction. Thus these edges each contribute either a +2 or a -2. But
there are five of these edges, and so there is no way to make their contributions add to
zero. Thus the sum of the values of the 4-cycles is not zero, so there is some 4-cycle
whose value is not zero, meaning that at least three of its edges are going the same
direction. O

Corollary 2.2. Fvery non-bipartite graph that has a quadrilateral embedding on the
projective plane has a dependent edge in every acyclic orientation.

Proof. Let GG be a non-bipartite graph that is quadrilaterally embedded on the projective
plane. Since G is not bipartite, G has an odd cycle. Cut the projective plane so that G
has the odd cycle on the boundary of the projective plane. The above argument shows
that G has a dependent edge. O

A graph G that is non-bipartite and has a quadrilateral embedding on the projective
plane is called a 4-skeleton. Youngs [7] showed that a 4-skeleton cannot be 3-colorable,



and in addition, there must be a quadrilateral face on which all four colors appear. We
observe the following corollary to his theorem. Note that there are three non-isomorphic
ways to use four colors on a 4-cycle.

Corollary 2.3. Let G be a 4-skeleton. In every 4-coloring of G there are at least
three 4-cycles that use all four colors, and three of these 4-cycles have non-isomorphic
colorings.

Proof. Given a 4-coloring of GG, there are 4! = 24 possible orderings for the four colors.
Each ordering of the colors specifies an acyclic orientation by orienting each edge toward
the endpoint with later color in the ordering. By the argument in Theorem 2.1, for every
acyclic orientation there is a 4-cycle in G with a dependent edge. A dependent edge
arises in a 4-cycle only when its vertices have the four colors appearing in increasing
order (according to the ordering of the colors) around the cycle. There are three non-
isomorphic ways to color a 4-cycle with four colors. Thus every 4-coloring of G' must
have at least one 4-cycle colored in each of these ways. In other words, a 4-coloring
of G must have at least three 4-cycles colored with all four colors, and three of these
colorings must be non-isomorphic

O

If the fourth color is used exactly once, then it must be in each of the three 4-cycles.
Tysdal [6] has shown that every (proper) 4-coloring of M (C5) where one color is used
only once yields an acyclic orientation with exactly one dependent edge [6].

3 Lower Bounds on 1,

In pursuit of lower bounds for r,, 4, we have considered graphs obtained by applying
iterations of the Mycielski construction. Our first theorem below applies to every graph
with girth at least 4 and with at least one dependent edge. Such a graph would have
chromatic number at least 4, and M (C) is the smallest such graph [3].

We use the notation ¢ — a + b to denote the subgraph of M(G) induced by the
replacement of ¢ with b in V(G).

Theorem 3.1. If G is a triangle-free graph such that dn,..(G) > 1, then
dmin(M(G)) > 3.

Proof. Since (7 is a subgraph of M (), every acyclic orientation of M () has at least
one dependent edge. Fix an acyclic orientation of M(G'). Let e; € F(G) be dependent
(in this orientation), and say e; = (x1,y1), where z1,y; € V(G). Note that it is
undetermined which vertex is the head of the oriented edge. Let 2/ be the new vertex
corresponding to z7. Let G' = G — 21 + 2. This is a copy of G in M(G) that does
not contain ey, and yet it must have a dependent edge. So M () contains a second
dependent edge e; = (22,y2), which appears in G’. Again we do not specify which
vertex is the head of the directed edge es.



Case 1: The edge ey is not incident to 2, i.e., @] ¢ {z3,y2}. Since G does not
contain a triangle, 1 cannot be adjacent to both x5 and y,. Suppose, without loss of
generality, that 21 and x3 are not adjacent, and z, is the new vertex corresponding to
2. Let G = G — a1 — 22+ 2 + 2. Now G” is a copy of GG in M(G) that does not
contain eq or ey, hence there must be a third dependent edge in M (G).

Case 2: The edge ey is incident to 2f, i.e., without loss of generality, 2] = z3. Let
y; be the new vertex corresponding to y; and let G" = G — y; + y;. Now G" is a copy
of G in M(G) that does not contain e; or ey (since y; and z9 = 2/ are missing). Since
the orientation of G"” must have a dependent edge, again M (G) has a third dependent
edge. O

Using the ideas from the proof above, it is easy to show that if G is triangle-free and
dmin(G) > 2, then dyin(M(G)) > 4. Similarly, if G is triangle-free and dmin(G) > 3,
then dpin(M(G)) > 6.

By Theorem 3.1, duin(M?*(C5)) > 3, and hence rs4 > 3/71. We can improve this
bound by looking at particulars of M (C5), and we show below that 4 < dpin(M?(Cs)) <
7. We find lower bounds for duin(M?>(C5)) and dmin(M*(C5)).

We will use the following vertex labelling for M?(C). In this labelling, vertices
a,b,c,dand e represent the vertices of the original 5-cycle. When M (C5) is created, the
vertices a’,b’, ¢/, d" and €' are copies of the original vertices, and z; is the extra vertex
added at the end of the construction. When the Mycielski construction is applied again,
the notation is the following: ="
and z3 is the extra vertex added.

is a copy of x, " is a copy of 2/, 29 is the copy of zy,

Figure 3: Vertex Labelling of M?(C5)

Lemma 3.2. Given any two vertices in M*(C5), neither of which are z3, there ewists
a copy of M(Cs) in M?(Cs) that misses both vertices.



Proof. If neither vertex is z1 or z3, then see Figure 4. If the two vertices are any of zq,
29, a vertex with label type z/, or a vertex with label type 3", then see Figure 5. If one
vertex is z; or 2 and the other is z (a vertex of the original 5-cycle) , then see Figure 6.
If one vertex is z; or 29 and the other is a vertex of label type ", then see Figure 7.

Figure 5: A copy of M(Cs) in M?(C'5) with none of zy, 29, 2" or ¢



Figure 7: A copy of M(C5) in M?(C5) with none of z1, 29, 2"

O
Theorem 3.3. M?(C5) has at least four dependent edges in every acyclic orientation.
Proof. The following proof is based on [6]. We will show that no matter how the three
edges found in the proof of Theorem 3.1 are arranged, there is a copy of M(C5) in

M?(C5) that misses all three edges, thus implying the existence of another dependent
edge. We may assume that none of the three edges are incident to z3, by the construction
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of the three dependent edges in Theorem 3.1. Further, if the three dependent edges
already found in the preceding proof are covered by two vertices, we can use Lemma
3.2, to find a copy of M(C5) in M?(Cj) that misses both vertices, and thus get a fourth
dependent edge. Thus we assume that the three dependent edges from the preceding
proof cannot be covered by two vertices and the subgraph induced by the three edges
must have six vertices. Let this set of six vertices be S.

Case 1: Suppose that both z; and z; are in S. They are not adjacent, so they cover
two edges. If the third edge has an endpoint of the form x or 2", Figure 6 will give us a
copy of M(C5) that misses the three known dependent edges, and if the third edge has
an endpoint of the form 2’ or 2, then Figure 7 will do the same.

Case 2: Neither 21 nor z3 is in S. We will find a copy of M (C5) in M?(Cs) symmetric
to Figure 4 that does not contain any of the three known dependent edges. Erase the
primes from the vertices in S and consider the subgraph formed by these unprimed
vertices and the images of the three dependent edges in the original Cs, {a,b, ¢, d, e}.
This subgraph has at most three edges. Any of the edges not in the subgraph generate
a copy of M (C5) symmetric to Figure 4.

Case 3: One of z; or z3 is in 5. We will find a copy of M (C5) in M?(C5) symmetric
to Figure 4 that does not contain any of the three known dependent edges. Except
for z; or z;, erase the primes from the vertices in S and consider the subgraph formed
by these unprimed vertices and the images of the two dependent edges which are not
adjacent to z; or z; in the original C5, {a,b,¢,d,e}. We want to find an edge in the
original C's which is not in the subgraph, and is not incident to the unprimed vertex
which was originally in a dependent edge with z; or z;. Such an edge must exist, since
there are three edges not in the subgraph, and any vertex in the (s can be incident to
at most two edges. This edge generates a copy of M (C5) symmetric to Figure 4 which
does not contain any of the three dependent edges. O

Corollary 3.4. r54 > 74—1.

While we know that d,;,(M?(Cs)) > 4, we have been unable to show equality. Our
best orientation, shown in Figure 8, has seven dependent edges, shown in boldface. This
orientation arises from the given 5-coloring of M?(C5). Simply orient each edge toward
the vertex with the larger number. The proof that these are the only dependent edges
is by exhaustion.

Next we use the fact that din(M?(Cs)) > 4 to find lower bounds for dpin(M?(Cs))
and duin(M*(C5)). An independent set of vertices in a graph (i is a subset of V (G) in
which no two vertices are adjacent.

Theorem 3.5. Every acyclic orientation of M>(C5s) has at least seven dependent edges.

Proof. Fix an acyclic orientation of M?(C5). By construction, M?(C5) is an original
copy of M?(Cs), say A, with an independent set of vertices, say B, where each vertex in
B corresponds to one vertex in A, plus one more vertex. By Theorem 3.3, we know that
every copy of M?(C5) in M?(Cs) has at least four dependent edges, and in particular



Figure 8: M?(C5) with Seven Dependent Edges

A does. Let H be the subgraph of A induced by the vertices of 4 dependent edges in
A. We claim that we can find an independent set in H that covers at least 3 of these
dependent edges. We then switch this independent set with their corresponding vertices
in B, and obtain a new copy of M?(C5) which has at most 1 of the 4 original dependent
edges. Since this new copy must have at least 4 dependent edges, we gain an additional
3 dependent edges, for a total of at least 7 dependent edges in M?(C5).

We observe that if H has an independent set of size 3, since every vertex is adjacent
to at least one dependent edge, this independent set covers at least 3 dependent edges.
Since M*(Cs) has no triangles, the neighbors of any vertex of degree 3 in H form an
independent set of size 3. Hence we assume that the degree of every vertex in H is less
than or equal to 2. Thus, the connected components of H are paths and cycles. If H
is bipartite, it contains an independent set which covers all 4 dependent edges. If H is
not bipartite, it contains a chordless odd cycle; if this odd cycle has size 7 or larger, H
has an independent set of size 3. If the odd cycle has size 5, and H has any other vertex
not on the 5-cycle, then H has an independent set of size 3. If H is exactly a 5-cycle,
then we can choose two independent vertices to cover any set of 4 edges, hence we can
find an independent set that covers all 4 dependent edges.

O

7
Corollary 3.6. 14 > 555-

It is possible to find a copy of the Moebius ladder on 8 vertices (an 8-cycle with
chords between each pair of vertices opposite vertices) as a subgraph of M?(C5). This
graph has largest independent set of size 3, and has perfect matching. Thus we cannot
immediately strengthen the argument above to get a better bound for M?(C5). We can,
however, use this result to give a bound for the number of dependent edges in M*(C5).
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Theorem 3.7. M*(C5) has at least eleven dependent edges.

Proof. The method of proof is similar to the proof of Theorem 3.5. Fix an acyclic
orientation of M*(Cs). Let A be the original copy of M?(Cs) in M*(C5) and let H
be the subgraph of A induced by the vertices of seven of its dependent edges. Since
M*(C5) has no triangles, clearly H is not a complete graph. We claim that we can
find an independent set in H that covers at least four of the dependent edges. We can
switch these vertices with their corresponding vertices in M*(Cj), getting a new copy
of M?(C5) which does not contain at least 4 of the original 7 dependent edges. Thus
we find an additional 4 dependent edges in M*(C) for a total of 11.

We observe that if H has an independent set of size 4, since every vertex is adjacent
to at least one dependent edge, this independent set covers at least 4 dependent edges.

Case 1: There is an independent set {u, v} in H such that every other vertex in H is
adjacent to one or both of v and v. If {u, v} covers 4 dependent edges, we choose {u, v};
if not, then {u,v} covers at most 3 dependent edges, but since H contains 7 dependent
edges, there are 4 which are not incident to either u or v. These edges must go between
neighbors of u and neighbors of v. Hence the set of neighbors of w in H, which must be
independent, covers these 4 dependent edges.

Case 2: H has an independent set of size 3, say {u,v,w}. If {u,v,w} covers 4
dependent edges, we choose {u,v,w}. If not, then each of u, v, w must be incident to
at least one dependent edge, so {u, v, w} covers exactly 3 dependent edges. For any
vertex z, let N(z) be the neighbors of z in H. The vertices of H — {u, v, w} are the
union (not necessarily disjoint) of N(u), N(v) and N(w). There are 4 dependent edges
in H—{u,v,w}. By the pigeon-hole principle, one of N (u), N (v), N(w) covers at least 3
of these 4 dependent edges, say N (u) does. Then N (u) also covers the unique dependent
edge incident to u, so N (u) covers at least 4 dependent edges. O

11

Corollary 3.8. r74 > =:.

Clearly the bounds for rs5 4, r¢4 and r7 4 could be improved simply by finding the
exact value for duyin(M?(C5)). It may also be possible to improve them by looking at
other graphs within the appropriate classes. In general, we observe that if GG is any
graph such that dpyin(G) > 0, then dpin(M(G)) > dmin(G) + 1. This follows because we
can always trade at least one vertex of ¢ for a new vertex in M(G). If dyin(G) = 0, then
dmin (M (G)) may not increase, for instance if G is an edge, then M(G) is the 5-cycle
and both can be oriented with no dependent edges.

The authors wish to thank Joan Hutchinson and the referees for helpful comments
and suggestions.
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