RETRACTS OF ODD-ANGULATED GRAPHS AND
CONSTRUCTION OF CORES

ZHONGYUAN CHE AND KAREN L. COLLINS

ABSTRACT. Let G be a connected graph with odd girth 2k 4+ 1. Then G is a
(2k + 1)-angulated graph if every two vertices of G are joined by a path such
that each edge of the path is in some (2k + 1)-cycle. We prove that if G is
(2k+1)-angulated, and H is connected with odd girth at least 2k+ 3, then any
retract R of the box (or Cartesian) product GOH is isomorphic to SOT where
S is a retract of G and T is a subgraph of H. A graph G is strongly (2k + 1)-
angulated if any two vertices of G are connected by a sequence of (2k+1)-cycles
with consecutive cycles sharing at least one edge. We prove that if G is strongly
(2k+1)-angulated, and H is connected with odd girth at least 2k+ 1, then any
retract R of the Cartesian (or box product) GOH is isomorphic to SOT where
S is a retract of G and T is a subgraph of H or S is a single vertex and T is
a retract of H. These two results improve theorems on weakly and strongly
triangulated graphs by Nowakowski and Rival in [9]. As a corollary, we get
that the core of two strongly (2k+ 1)-angulated cores must be either one of the
factors or the product itself. We construct cores from graphs that have a vertex
which is fixed under any of its automorphisms, and also from vertex-transitive
graphs. In particular, the box product M(G)OM(G) is a core if M(G) is a
core, where M (G) is the graph resulting from the Mycielski construction on G.
Further, the box product of any two Kneser graphs K(n,2n+1)0K (m, 2m+1)
is a core whenever n,m > 2; and K(n,2n+1)0C2y,+1 is a core for m > n > 2.

1. INTRODUCTION

Graphs in this paper will be simple, loopless and finite unless otherwise specified.
We denote the vertex set of a graph G by V(G) and the edge set by E(G). If two
vertices u, v are adjacent, we write u ~ v. We will denote (2k + 1)-cycles by Capt1
and the complete graph with n vertices by K,.

A graph homomorphism between graphs G and H is a map f: V(G) — V(H),
or G — H, that preserves adjacency, i.e., if f: G — H, then v ~ v in G implies
that f(u) ~ f(v) in H. A graph H is called a retract of G if H is an induced
subgraph of G and there is a graph homomorphism f : G — H. The map f is
called a retraction of G. A smallest retract of G is known as the core of G, and
we denote it by G*. It is easy to see that G is its own core if and only if every
endomorphism of G is an automorphism of G. Complete graphs, odd cycles, Kneser
graphs and (vertex or edge) chromatic-critical graphs are all cores.

The Cartesian product, or box product, GOH, is defined to be the graph that
has vertex set V(G) x V(H) and (g1, h1) ~ (g2, he) in GOH if either g; = g2 and
hi ~ hyin H or g ~ g in G and h; = hs. Let U be a subgraph of GOH. The
projection of U to G is {a | a is a first coordinate of some vertex in U}.
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Let G be a connected graph. Then G is called weakly triangulated if each edge
of G is in a triangle; G is called strongly triangulated if every pair of vertices is
joined by a sequence of triangles with consecutive triangles sharing an edge. These
definitions, and decomposition theorems for retracts of the box product graph GOH
are derived in [9] when one factor is weakly-triangulated, or when one factor is
strongly-triangulated. Some incorrect proofs are fixed in [7].

In this paper, we replace the definition of weakly triangulated by the more general
definition of (2k + 1)-angulated, k > 1, and extend the theorems of [9] to graphs
with larger odd girth. Let G be a connected graph with odd girth 2k + 1, k£ > 1.
Then we define G to be (2k + 1)-angulated if every two vertices of G are joined
by a path such that each edge of the path is in some (2k + 1)-cycle; and we define
G to be strongly (2k + 1)-angulated if any two vertices of G are connected by a
sequence of (2k + 1)-cycles with consecutive cycles sharing at least one edge. Our
definition of (2k + 1)-angulated improves their definition of weakly triangulated
because a weakly triangulated graph is always 3-angulated, but a 3-angulated graph
is a weakly triangulated graph, plus some (possibly empty) set of edges which are
not in triangles. In addition, although a weakly triangulated graph need not be a
strongly triangulated graph, and vice versa, it is easy to see that strongly (2k + 1)-
angulated graphs are also (2k + 1)-angulated.

Our results generalize the weakly triangulated and strongly triangulated the-
orems in [9] from k& = 1 to any positive integer k. Lemma 2.2 is a direct gen-
eralization, but while the main ideas of our proofs of Lemmas 3.1, 3.2, 3.3, and
Theorems 3.4, 3.5 and 4.1 are similar, Nowakowski’s and Rival’s proofs depend on
the isometry between a graph and its retract while our proofs do not.

In Section 2, we prove the basic lemma that transfers smallest odd cycles through-
out a box product of graphs. In Section 3, we prove the strongest result possible
for (2k 4 1)-angulated graphs, namely that if G is (2k + 1)-angulated and H is a
connected graph with odd girth at least 2k + 3, then any retract of GOH is SOT
where S is a retract of G and T is a connected subgraph of H. On the other hand,
if G and H are both (2k + 1)-angulated cores, then the core of GOH need not be
one of G, H, or GOH, see [3].

In Section 4, we prove that if G is strongly (2k+ 1)-angulated, and the odd girth
of H is at least 2k + 1, then any retract of GOH is SOT where either S is a retract
of G and T is a subgraph of H, or |V(S)| = 1 and T is a retract of H. Hence we
show that if G and H are strongly (2k + 1)-angulated cores, then the core of GOH
is either G, H or GOH. Let M(G) be the result of the Mycielski construction
on GG. We show that if G is a 5-angulated graph which is chromatic-critical, then
M(G)OM(G) is a core. With a more general version of the Mycielski construction,
this result generalizes for chromatic-critical (2k + 1)-angulated graphs.

In Section 5, we consider the box product of two vertex-transitive graphs with
large odd girth. In particular, we show the box product of two Kneser graphs
K(n,2n+ 1)OK(m,2m + 1) is a core for any integers m,n > 2, as well as the box
product K(n,2n 4+ 1)0C%,;,+1 where m > n > 2. We conclude with some open
questions in Section 6.

2. RETRACTS OF BOX PRODUCTS

In this section, we prove a basic lemma about where smallest odd cycles of G can
be mapped by a retraction of GOH. Let R denote a retract of the box product GOH
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and let ¢ : GAH — R be the retraction from GOH to R. We know that R can be
considered as an induced subgraph of GOH. For x € V(H), let R, = (GO{z})NR.
As observed in [9], if G is connected, then any retract R of G is connected, and R,
is connected for any vertex x in H.

Definition 2.1. [9] Let G and H be finite connected graphs and S be a connected
subgraph of G. We say that S transfers in H if for every retract R of GOH,
whenever z,y € V(H), and R, is not empty, and SO{z} C R, then SO{y} C R.

A set C = {uy,ug, - ,usp+1} C V(G) is an odd cycle of G if ug ~ ug ~ -+ ~
Ugk+1 ~ u1 and there are no other edges between the vertices in C.

Lemma 2.2. Let G and H be finite connected graphs, where the odd girth of G
is 2k + 1, and let R be any retract of GOH. Let C be an odd cycle in G of length
2k + 1. If there exists =,y € H and uy € C such that CO{z} C R and (u1,y) € R,
then CO{y} is in R.

Proof. Tt is enough to show that CO{y} is in R for some y adjacent to z in H
since H is connected. Let C = {uj,ua, - ,uskt1}. Since ¢((ug2,y)) is adja-
cent to (u1,y) and (ug,x), and both are in R, either ¢((uz2,y)) = (u2,y) € R
or ¢((uz,y)) = (ur,x). If ¢((us,y)) = (us2,y), that is, (us,y) is fixed under ¢, then
either ¢((us,y)) = (us,y) € R or ¢((us,y)) = (u2,x). Let us suppose that (uj41,y)
is the first vertex in CO{y} that is not fixed under ¢, that is, ¢((us,y)) = (w4, y)
for all 1 <4 < j, then ¢((uj4+1,y)) = (uj,z) in R. Now ¢((uj4+2,v)) is adjacent to
both ¢((ujt1,y)) = (uj,x) and (uji2,2). This implies that ¢((uj42,y)) = (w1, )
where w; is adjacent to u; and u;42 in G. Next ¢((uj4+3,y)) is adjacent to both
é((ujy2,vy)) = (w1, ) and (w13, ). This implies that ¢((uj+3,vy)) = (we, x) where
wy is adjacent to w; and ujys in G. Continue this argument, then we can see
that ¢((uak,y)) = (wak—j—1,2) where wor—j—1 is adjacent to wor—j—2 and ug in
G. Finally, ¢((u2k+1,y)) = (wa2k—j;, ) since it has to be adjacent to (war—j—1,2)
and (uggt1,2). Also ¢((ugkt1,y)) must adjacent to ¢((u1,y)) = (u1,y), hence
W2k —j5 = U1- Thus,

(CO{y}) = {ur, - ,u; }0{y} U{uj, wi,wa, -+, wop—j_1,u1 }O{x}

Hence {ui, - ,u;, w1, ws--- ,wap_j_1} contains an odd cycle in G with size at
most 2k — 1. This contradicts the fact that the odd girth of G is 2k + 1. Hence
#(CO{y}) = CO{y}. =

3. ONE FACTOR 1S (2k + 1)-ANGULATED

In this section we show that if G is (2k + 1)-angulated and H has odd girth at
least 2k + 1, then 2k 4 1 cycles of G transfer in H. Hence R, = R, whenever both
R, and R, are not empty. We conclude with the theorems that if G is (2k + 1)-
angulated and H has odd girth at least 2k + 3, then any retract of GOH is the
form of SOT, where S is a retract of G and T is a subgraph of H.

Let G be a connected graph with odd girth 2k + 1 and H be a connected graph
with odd girth at least 2k + 3. We note that if C' is a 2k + 1 cycle in G, then for
any vertex x € V(H), ¢(CO{z}) = C'O{y} for some 2k + 1 cycle C’ C G and
some vertex y € V(H). Further, if both G, H have odd girth 2k + 1, then either
$(CO{z}) = C'O{y} for some 2k + 1 cycle ¢’ C G and some vertex y € V(H), or
»(CO{z}) = {a}OC"” for some 2k + 1 cycle C” C H and some vertex a € V(G).
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Lemma 3.1. Let G be (2k + 1)-angulated and H be a connected graph with odd
girth at least 2k 4+ 1, and R be a retract of GOH. Then R, is (2k + 1)-angulated
for any z € H.

Proof. Let ¢ : GOH — R be the retraction and let (a,z) and (b,x) be any two
vertices in R,. Then there is a path P :={a =wug ~uj ~ug ~ -+ up_1 ~ u, = b}
in G joining @ and b such that each edge {u;—1 ~ u;} is contained in some (2k + 1)-
cycle C; of G for 1 <i < n since G is (2k + 1)-angulated.

If the odd girth of H is at least 2k + 3, then ¢(C;0{x}) = C/O{z;} where C} is
some (2k+1)-cycle in G and z; € V(H) for each 1 <14 < n. Since ¢(a,z) = (a,z) €
C10{z} , then z; =z, and ¢(C10{z}) = C10{z}. Note that any two consecutive
cycles C;O{z} and Cj,,0{x} overlap on at least one vertex, hence we see that
z; = x and ¢(C;0{z}) = C/O{z} for each 1 < i < n. Therefore, the vertices (a, x)
and (b, z) are joined by the path {a =uj ~uj ~uh ~ - ~ul,_; ~ul, =0b}0{x},
and each edge {(u}_,,x) ~ (u},z)} is contained in the (2k + 1)-cycle C{0{z} in R,
for 1 < i < n. Therefore, R, is (2k + 1)-angulated.

If the odd girth of H is 2k + 1, then for each (2k + 1)-cycle C;0{z}, either
¢(C;0{z}) = C!O{z} where C! is an (2k+1)-cycle in G and z € H or ¢(C;0{z}) =
{w}O{C!} where C! is a (2k 4+ 1)-cycle in H and w € G. Suppose that the
projection of ¢(PO{x}) to G is {a = wy ~ w1 ~ wz--- ~ ws = b}. Then for each
w; there exists some j; such that (w;,z;) = ¢(uj,, ) ~ d(uj41,2) = (Wit1, %)
for each w;, and {(wi, z;), (wit1,2:)} is contained in some (2k + 1)-cycle C} O{z;}
in GO{z}, 0 < i < s—1. Recall that a = wo € C} and (a,z) € R, thus,
¢(C7, 0{z}) € R, by Lemma 2.2. In addition, every pair of consecutive cycles
overlap on at least one vertex. Therefore C} O{z} C R, by Lemma 2.2 for all
0 < i < s—1. Hence the vertices (a,z) and (b,x) are joined by the path {a =

wy ~ wy ~ wy--- ~ ws = b}0{x}, and each edge {(w;,x) ~ (wit1,2)} in the
path is contained in the (2k + 1)-cycle C} O{x} in R,. Therefore, R, is (2k + 1)-
angulated. O

Example 1: We note that the condition of H having odd girth at least 2k + 1
is necessary, because of the following example. Although Cj is 5-angulated, and
K3 is connected, we demonstrate a retraction from C50K3 to KoOK3, and Ko is
not 5-angulated. Let the vertices of C50K3 be {a,b,c,d, e} x {1,2,3}. Define ¢ :
Cs0K5 — {a,b}0{1, 2,3} as follows. The vertices (a, 1), (b, 1), (a,2), (b,2), (a, 3), (b, 3)
are fixed by ¢. Let ¢(c,i) = (b,i + 1) modulo 3, ¢(d,7) = (b,i + 2) modulo 3, and
¢(e,3) = (b,4) modulo 3. Then it is straightforward to check that ¢ is a homomor-
phism.

Lemma 3.2. Let G be (2k + 1)-angulated and H be a connected graph with odd
girth at least 2k + 1. Then every (2k + 1)-cycle of G transfers in H.

Proof. Let C be an odd cycle of G and let ¢ : GOH — R be a retraction. Suppose
that CO{x} C R, and there is some vertex (d,y) € R,. We show that CO{y} C R,.
If d € C, apply Lemma 2.2. Let d ¢ C, and choose any vertex a € C. Then there
exists a path P:={a =ug ~u; ~ug ~ -+ ~uy_1 ~u, =d} in G such that each
edge {u;—1 ~ u;} is contained in some (2k + 1)-cycle C; of G for 1 < i < n (since
G is (2k + 1)-angulated).

If the odd girth of H is at least 2k 4 3, then, using the same argument as in
Lemma 3.1, for each 1 < i < n, ¢(C;0{z}) = C/0O{z} where C/ is some (2k + 1)-
cycle in G. Note that ¢(d,z) € ¢(C,0{z}) = C}0{z}, and ¢(d,z) ~ (d,y) in R,
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therefore, ¢(d,x) = (d,x) and d € C},. Recall that (d,y) € Ry, thus, C},0{y} C R,
by Lemma 2.2. In addition, every two consecutive cycles overlap on at least one
common vertex, therefore, C/0{y} C R, by Lemma 2.2 for all n—1 > ¢ > 1. Thus,
(a,y) € Ry since a € C7. This implies that CO{y} C R, by Lemma 2.2.

Let the odd girth of H be 2k + 1. Then (d,z) ~ (d,y) so ¢(d,z) = (e,y) or
¢(d,x) = (d,z) where e ~ d in G or y ~ z in H. Assume that ¢(d,z) = (e,y).
Denote the projection of ¢(PO{z}) to G as {a = wy ~ w1 ~ wa -+ ~ w; = e}. For
each w;, there exist some j; such that (w;, z;) = ¢(uj,, ) ~ ¢(uj,,,, ) = (Wit1, 2;)
and the edge {(w;,2;), (wit1,2i)} is contained in some (2k + 1)-cycle C} O{z;} in
GO{z;}, 0 <i<t—1. Note that e € C},  and (e,y) € Ry, hence C}, O{y} C R,
by Lemma 2.2. In addition, every two consecutive cycles overlap on at least one
vertex, therefore C’J’D{y} C R, by Lemma 2.2 for all t —1 > ¢ > 0. Thus,
(a,y) € Ry since a € C] . This implies that CO{y} C R, by Lemma 2.2.

Suppose that ¢(d, x) = (d, z), where z ~ y in H. The proof in this case follows
the same plan: project (PO{z}) to G and use Lemma 2.2. O

Lemma 3.3. Let G be (2k + 1)-angulated and H be a connected graph with odd
girth at least 2k + 1. If R is any retract of GOH, then R, and R, are identical for
any two vertices z,y € H when both R;, R, are not empty.

Proof. If G is (2k + 1)-angulated, then R, is (2k + 1)-angulated by Lemma 3.1. If
|R:| > 2, then there is a path joining any two vertices in R, where each edge in
the path is contained in some (2k 4 1)-cycle in R,. If R, is not empty, then each
of these cycles transfers to R, by Lemma 3.2. Thus, if |R,| > 2 for at least one
vertex € H, then |Ry| > 2 or R, is empty for all y € V(H). Any cycles in R,
transfer back to R, hence R, = R,. If |R;| < 1 for all « € V(H), then R, has no
edges for any x, hence R, is either empty or isomorphic to the one vertex graph
for each x. O

Theorem 3.4. Let G be (2k+ 1)-angulated and H be a connected graph with odd
girth at least 2k + 1. If R is a retract of GOH, then R = SOT where where S, T
are connected and S C G and T C H.

Proof. Let R be aretract of GOH. If R, and R, are not empty where z,y € V(H),
then R, and R, are identical by lemma 3.3. Hence R = SOT where S = {a €
V(G)| (a,y) € Ry}, T ={y € V(H)|R, # 0}. We know S is connected because R,
is connected, and T' is connected because H connected. O]

Theorem 3.5. Let G be (2k+1)-angulated and H be a connected graph with odd
girth at least 2k + 3. Let ¢ : GOH — R be a retraction. Then R = SOT where
S, T are connected where S is a retract of G and T' C H.

Proof. Note that R = SOT by Theorem 3.4. Let z € T. If |R;| = 1, then |R,| =1
for all x € T by Lemma 3.3. Therefore, R = T C H, but the odd girth of H is
greater than the odd girth of G, so GOH cannot map to H. Therefore S cannot
be a single vertex, and |R;| > 2 for all z € V(T).

Let (a,z) € GO{z}, but not in SO{x}. For any (b,z) € SO{z}, there is a
path {(b,2) ~ (a1,z) ~ -+ ~ (am,z) = (a,2)} joining (b, z) and (a,x) such that
each edge in the path is contained in some (2k + 1)-cycle of GO{x} since G is
(2k + 1)-angulated. Say the cycles are C10{z}, Co0{z},...,C,,0{z}, where C;
is a (2k + 1)-cycle of G for 1 < ¢ < m. Then ¢(C;0{z}) C SO{z;} where each
zi € V(H) for each 1 < i < m. Since C10{z} overlaps SO{z} at (b, z), then
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#(C10{z}) C SO{z}, and since C; overlaps Cs, then ¢(C2)O{x} C SO{z} as
well. As we continue along the path, we see that ¢(C,,0{z}) C SO{x}, hence
#(a,z) € SO{x} since (a,z) € Cp,O{z}, so ¢(GO{z}) C SO{x}. Hence S is a
retract of G. O

Remark: This theorem does not hold if the odd girth of H is 2k + 1, see [3].

Corollary 3.6. Suppose G is a (2k + 1)-angulated core, with a vertex that is fixed
by every automorphism of G, and H is a core with odd girth at least 2k + 3. Then
GUOH is a core.

Proof. Let ¢ : GOH — R be a retraction. Then R = GOT where T C H by
Theorem 3.5. The odd girth of G is less than the odd girth of H. Therefore,
for each © € V(H), there exists y, € V(T) such that ¢(GO{z}) = GO{y,}. Let
v : H — T by ¢(z) = y,. We will show that ¢ is a homomorphism, hence T'= H
because H is a core. It is clear that v is well-defined. Now let z ~ z in H.
Then ¢(GO{z}) = GO{y,} and ¢(GO{z}) = GO{y.}. Let a be the vertex in G
which is fixed by every automorphism. Since x ~ z, (a,z) ~ (a,z). Therefore
(a,yz) = #(a,z) ~ ¢(a, 2) = (a,y.). Hence y, ~ y..

4. ONE FACTOR IS STRONGLY (2k + 1)-ANGULATED

Since strongly (2k+1)-angulated implies (2k+1)-angulated, all the lemmas from
the previous section apply to strongly (2k + 1)-angulated graphs. In this section we
prove our main theorems about strongly (2k 4 1)-angulated graphs. Then we apply
the result to construct cores of box product form with one factor having a fixed
vertex under any automorphism of it. In particular, suppose M(G) is a Mycielski
construction of a graph G. If M(G) is a core, then M (G)OM(G) is a core. This
result can generalized to the box product of graphs with the construction similar
to the Mycielski construction to create 4-chromatic graphs of arbitrarily large odd
girth. In Example 1, both C5 and K3 are strongly angulated, it has a retract
K>0K3, so the hypothesis in the theorem below cannot be relaxed to allow the odd
girth of H to be less than 2k + 1.

Theorem 4.1. Let G be strongly (2k + 1)-angulated and H be a connected graph
with odd girth at least 2k 4+ 1. Let ¢ : GOH — R be a retraction. Then R = SOT
where either S is a retract of G or |[V(S)| =1 and T is a retract of H.

Proof. If G is strongly (2k + 1)-angulated, then it is (2k + 1)-angulated. Therefore,
R = SOT by Theorem 3.4. If V(S) = {a}, then R = {a}0T = T, hence T is
a retract of GOH. If |[V(S)| # 1, choose two different vertices (a,x) and (b, x)
in SO{z} C GO{z}. Let ¢ : GOH — SOT be the retraction. We will show
¢ : GOx — SO{x} for any = € V(T). For any (g,z) € GO{x} that is not in
SO{z}, there is a sequence of (2k 4 1)-cycles with consecutive cycles sharing at
least one edge joining (a,z) and (g,z) in GO{x}. Let CO{z} be the cycle that
contains (a,z). If ¢(CO{z}) C R,, then the image under ¢ of all of the cycles are
contained in R,. In this case, ¢(g,z) € SO{z}. On the other hand, if ¢(CO{x}) in
not contained in R, then ¢(CO{z}) = {a}OC" for some 2k + 1 cycle C’ in H, and
therefore, all the cycles are contained in {a}07. Hence ¢(g,z) = (a,y) for some
vertex y € V(H). The same construction shows that either ¢(g, z) = (b, z) for some
vertex z € V(H) which is impossible because a # b. Hence ¢(g,2z) € SO{z} for
any (g,x) € GO{x}. O
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Corollary 4.2. Suppose G and H are strongly (2k + 1)-angulated cores, then the
core of GOH is either G, H or GOH. Further, if G and H are homomorphically
inequivalent (that is, G 4 H and H / G), then GOH is a core.

Recall the Mycielski construction on a graph G with vertex set {uy,us, ..., u,}:
let M(G) be the graph whose vertex set is

U= {ui,ug,...,unf UW ={wy,wa,... ,w,}UZ = {z}

The adjacencies in M(G) are as follows: u; ~ u; in M(G) if u; ~ u; in G, and
w; ~ uj if u; ~u; in G, and z ~ w; for 1 <4 < n. Note that if G is chromatic-
critical, then M (QG) is also chromatic-critical, hence a core.
Example 2: the Petersen graph [6], P, and the 4-chromatic Mycielski graph [2],
or Grotzsch graph, M(Cj5), are both strongly 5-angulated cores. It is well-known
that POP is a core [1], and we give a new proof of this in Section 5. Since M (Cs)
is 4-chromatic, but P is 3-chromatic, the core of POM (Cs) cannot be P. On the
other hand, the core of POM (C5) cannot be M(C5) because P does not map to
M (Cs). To see this, we observe that identifying two vertices of P would create
a triangle, but M(Cj5) has no triangles, so if P mapped to M(Cj), there would
be a 10 vertex subgraph of the 11 vertex graph M (Cs) which contained P. Tt is
straightforward to check that that cannot happen. Hence POM (Cs) is a core.
From Corollary 4.2, we can conclude that M (C5)0M (C5) is a core. If not, then
the core of M(C5)OM (Cs) is M(Cs), but M(Cs) is a core, and has exactly one
vertex, u, of degree 5. Hence in any mapping of M (Cj5) to itself, v must go to u.
Now in M (C5)0OM (Cs), we can find two adjacent copies of M (Cs), say M (Cs)0{x}
and M (Cs)O{y}. If M(C5)0OM(C5) — M(Cs), then (u,x) ~ (u,y) both map to
the same vertex w, which cannot happen. Hence M (C5)0M(C5) is a core. The
same proof shows the following corollary.

Corollary 4.3. Suppose G is a strongly (2k + 1)-angulated core, such that in any
automorphism of G, there is a vertex which remains fixed. Then the core of GOG
is a core.

Lemma 4.4. Let G be a strongly 5-angulated graph. Then M (G) is strongly 5-
angulated.

Proof. The vertex set of M(G) is UUW U Z. Any two vertices in U are connected
by a sequence of 5-cycles which overlap on at least an edge because U has the same
edges as G. If we consider two vertices wy,ws € W, then if u; ~ us, the vertices
u1, Uz, W1, wse, z form a 5-cycle. Hence z is in a 5-cycle with every vertex in U and
in W. If uy 2 ug, then the graph on U — {uy,us} + {w1,ws} is isomorphic to G, so
there is a sequence of consecutive 5-cycles that overlap on at least one edge between
wy and wy. If we consider u; € U and w; € W, then if ¢ = j, we already showed
these were in a 5-cycle together, and if ¢ # j, then the graph on U — {u;} + {w;}
contains u;, w; and is isomorphic to G, so they are connected by a sequence of
5-cycles which overlap on at least an edge. O

Corollary 4.5. Let G be a strongly 5-angulated graph. If M(G) is a core, then
M(G)OM(G) is a core. Hence if G is chromatic-critical, M (G) and M(G)OM(G)
are both cores.

Starting with graphs G of any odd girth, Van Ngoc and Tuza [11] and indepen-
dently Youngs [12] have used a construction similar to the Mycielski construction
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to create 4-chromatic graphs of arbitrarily large odd girth. It is straightforward to
show that Lemma 4.4 holds in this more general setting, hence so does a version of
Corollary 4.4.

These results cannot extend to GOGOG, or longer products, because if G is
strongly (2k+ 1)-angulated, then GOG is not strongly (2k+ 1)-angulated, although
it is (2k + 1)-angulated. See open question 6.2.

O

5. CONSTRUCTING CORES USING VERTEX-TRANSITIVE GRAPHS

In this section, we use the results from section 3 and section 4 to construct cores
from vertex-transitive graphs. In particular, we show that K (n,2n+1)0K (m, 2m+
1) is a core for any integers m,n > 2.

Definition 5.1. A graph G is called vertex-transitive if there is an automorphism
f of G such that f(u) = v for any two vertices u and v of G.

Definition 5.2. Let a(G) be the size of a maximum independent set of G. The

independence ratio of a graph is defined to be i(G) = |3((g))‘

If G — H and H is vertex transitive, then i(G) > i(H) by the No-Homomorphism
Lemma [1]. Hence, if G, H are vertex transitive and homomorhically equivalent,
then i(G) = i(H).

Theorem 5.3. Let G and H be strongly (2k + 1)-angulated cores. If G, H are
vertex-transitive and i«(GOH) < i(G),i(H). Then GOH is a core.

Proof. If G and H are strongly (2k + 1)-angulated, Corollary 4.2 tells us that
(GOH)* is G, H or GOH. Since the core of a vertex-transitive graph is vertex-
transitive [5], then i(GOH) = i((GOH)*) by the No-Homomorphism lemma [1].
Hence GOH is a core. O

Theorem 5.4. Let G and H be strongly (2k+1)-angulated cores. Let G be vertex-
transitive such that such that any two maximum independent sets have non-empty
intersection (that is, i((GOK3) < i(G) ). If G 4 H, then GOH is a core.

Proof. If G and H are strongly (2k + 1)-angulated, Corollary 4.2 tells us that
(GOH)* is G, H or GOH. Now GOK,; 4 G, because GOK, and G are both
vertex-transitive, but i(GOK3) # i(G). Therefore i(GOK3) /4 G, hence GOH is a
core. 0

Theorem 5.5. Let G be a (2k + 1)-angulated vertex-transitive core such that
i(GOK3) < i(G). If H is a core with odd girth at least 2k + 3, then GOH is a core.

Proof. Let ¢ : GAH — (GOH)*. By Theorem 3.5, we know that (GOH)* = GOT
where T' C H. Therefore, for each x € V(H), there exists y, € V(T) such that
$(GO{z}) = GO{y,}. Let v : H — T by (x) = y,. We will show that ¢ is
a homomorphism, hence T' = H because H is a core. It is clear that v is well-
defined. Suppose that © ~ z in H. Then we show that y, # y,. Otherwise,
¢(GOK,) = G which contradicts i(GOK2) < i(G). Thus, y, # y.. Let a € V(G).
Then (a,z) ~ (a,z) in GOH, and (d,y,) = ¢(a,z) ~ ¢(a,z) = (a”,y.). Hence
a’ = ad” and y, ~ y,. Hence v is a retraction from H to T, but H is a core, so
T=H.

O
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Definition 5.6. The Kneser graph K (n,s) is the graph whose vertices are the n-
subsets of an s-set where 1 < n < 3, and two vertices are adjacent if and only if
the corresponding n-subsets are disjoint. Kneser graphs are vertex transitive. The
Petersen graph, P, is K(2,5).

Recall that the odd girth of K(n,2n + 1) is 2n + 1. If an odd cycle Cy;41
maps to K(n,2n + 1), then i(Coiy1) = 21’? > 5y = i(K(n,2n + 1)) by the
No-homomorphism lemma [1]. Hence i > n which means that the odd girth of
K(n,2n+1) is at least 2n+ 1. S. Stahl showed the existence of a (2n + 1)-cycle in
K(n,2n+1) in [10]. Therefore the odd girth of K(n,2n+1) is 2n+1. Here we have a
much stronger result which implies that K (n,2n+1) is strongly (2n+ 1)-angulated.

Lemma 5.7. Any two vertices u,v € V(K(n,2n + 1)) are in some (2n + 1)-cycle
of K(n,2n + 1) together.

Proof. We will first find one (2n + 1)-cycle in K (n,2n + 1). Since K(n,2n + 1) is
vertex-transitive, it is enough to show that for any fixed vertex is in a (2n+1)-cycle
with any other vertex of K (n,2n + 1).

Consider the vertices u; = {(i—1)n+j |1 <j<n}forl <i<nin K(n,2n+1)
where addition is mod 2n + 1. Let 1 < ¢ < n. Note that the intersection of u; and
ug has t —1 elements: uyNugy = {n—(t—2),n—(t—3),...,n}. The intersection of
uy and ugiq1 has n—t elements: uy Nugir1 = {1,2,...,n—t}. Thus, the caset =1
shows w1 ~ uy and the case t = n shows u; ~ ug,41, but for every other value of
t, uy o ugp, usey1. Similarly, u,; is adjacent to u;41 and ugn40—; for 2 <4 <mn+ 1.
Therefore, uy,us, ..., u2,+1 form a chordless (2n + 1)-cycle in K(n,2n + 1).

We only need prove that any vertex v = {b1,bs,...,b,} is contained in some
(2n + 1)-cycle with uy = {1,2,3,...n}. If the n-subsets corresponding to u; and v
are disjoint, then we permute {1,2,3,...,2n 4+ 1} as follows: take the product of
the 2-cycles (b; (n+j5)) for each 1 < j < n, and fix everything else. This induces an
automorphism of K (n,2n+ 1) which maps v to us and fixes u;. Hence u; and v are
in some (2n + 1)-cycle because u; and ug are. On the other hand, suppose u; and
v have non-empty intersection, say |u; Nv| =t — 1 for some 2 < ¢t < n. Recall that
|ur Nug| =t — 1. We permute {1,2,3,...,2n + 1} by interchanging the elements
in u; Nv with those in u; N usg:, and interchanging the elements in v — u; Nv with
those in wss — w1 Nuge. This induces an automorphism of K (n,2n + 1) which maps
v to ug; and fixes u;. Hence u; and v are in some (2n + 1)-cycle because u; and
Ugp are. O

Hence the Kneser graph K(n,2n + 1) is strongly (2n + 1)-angulated graphs for
each integer n > 1. For example, any two vertices of the Petersen graph are in some
5-cycle. By the Erdos-Ko-Rado Theorem, it is well-known that any two maximum
independent sets of K(n,2n + 1) have non-empty intersection if n > 2. Hence
K(n,2n+ 1)OKy A K(n,2n+ 1) if n > 2.

Corollary 5.8. K(n,2n + 1)0K(m,2m + 1) is a core for any integers m,n > 2.

Proof. f m = n, then K(n,2n + 1)0K(n,2n 4+ 1) is a core by Theorem 5.3. If
n < m, then K(n,2n + 1)0K (m,2m + 1) is a core by Theorem 5.5. O

Corollary 5.9. K(n,2n + 1)0C4; is a core for any integers | > n > 2.

Proof. It | = n, then K(n,2n + 1)0C5,,+1 is a core by Theorem 5.4. If | > n > 2,
then K(n,2n + 1)0C%41 is a core by Theorem 5.5. O
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Example 3: Although, using any 3-coloring, we see that POCs — K3, by Corol-

lary 5.9, POC5 is a core. Another proof of this fact follows from the No-homomorphism

lemma (see [5]), since POC5 is vertex-transitive and its independence ratio is if.

The independence ratio of any subgraph of POCs must have smaller denominator,
hence cannot equal é—g.

6. QUESTIONS

Question 6.1. In general, if G and H are (2k + 1)-angulated cores, then (GOH)*
need not be one of G, H, or GOH, see [3]. Are there extra hypotheses or G or H
which will mean this must be true?

Question 6.2. If G is a strongly (2k + 1)-angulated graph, then GOG is not
strongly (2k + 1)-angulated, but is (2k + 1)-angulated. What can be proved about
the core of the box product of G with itself m times? For example, it is well-known
that the core of the box product of C5 with itself m times is C, see [8], and that
the box product of P with itself m times is a core, for each m, see [1].
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