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Abstract. Let G be a connected graph with odd girth 2k + 1. Then G is a

(2k + 1)-angulated graph if every two vertices of G are joined by a path such

that each edge of the path is in some (2k + 1)-cycle. We prove that if G is
(2k+1)-angulated, and H is connected with odd girth at least 2k+3, then any

retract R of the box (or Cartesian) product G2H is isomorphic to S2T where

S is a retract of G and T is a subgraph of H. A graph G is strongly (2k + 1)-
angulated if any two vertices of G are connected by a sequence of (2k+1)-cycles

with consecutive cycles sharing at least one edge. We prove that if G is strongly

(2k+1)-angulated, and H is connected with odd girth at least 2k+1, then any
retract R of the Cartesian (or box product) G2H is isomorphic to S2T where

S is a retract of G and T is a subgraph of H or S is a single vertex and T is
a retract of H. These two results improve theorems on weakly and strongly

triangulated graphs by Nowakowski and Rival in [9]. As a corollary, we get

that the core of two strongly (2k+1)-angulated cores must be either one of the
factors or the product itself. We construct cores from graphs that have a vertex

which is fixed under any of its automorphisms, and also from vertex-transitive

graphs. In particular, the box product M(G)2M(G) is a core if M(G) is a
core, where M(G) is the graph resulting from the Mycielski construction on G.

Further, the box product of any two Kneser graphs K(n, 2n+1)2K(m, 2m+1)

is a core whenever n, m ≥ 2; and K(n, 2n+1)2C2m+1 is a core for m ≥ n ≥ 2.

1. Introduction

Graphs in this paper will be simple, loopless and finite unless otherwise specified.
We denote the vertex set of a graph G by V (G) and the edge set by E(G). If two
vertices u, v are adjacent, we write u ∼ v. We will denote (2k+ 1)-cycles by C2k+1

and the complete graph with n vertices by Kn.
A graph homomorphism between graphs G and H is a map f : V (G) → V (H),

or G →f H, that preserves adjacency, i.e., if f : G → H, then u ∼ v in G implies
that f(u) ∼ f(v) in H. A graph H is called a retract of G if H is an induced
subgraph of G and there is a graph homomorphism f : G → H. The map f is
called a retraction of G. A smallest retract of G is known as the core of G, and
we denote it by G∗. It is easy to see that G is its own core if and only if every
endomorphism of G is an automorphism of G. Complete graphs, odd cycles, Kneser
graphs and (vertex or edge) chromatic-critical graphs are all cores.

The Cartesian product, or box product, G2H, is defined to be the graph that
has vertex set V (G) × V (H) and (g1, h1) ∼ (g2, h2) in G2H if either g1 = g2 and
h1 ∼ h2 in H or g1 ∼ g2 in G and h1 = h2. Let U be a subgraph of G2H. The
projection of U to G is {a | a is a first coordinate of some vertex in U}.
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Let G be a connected graph. Then G is called weakly triangulated if each edge
of G is in a triangle; G is called strongly triangulated if every pair of vertices is
joined by a sequence of triangles with consecutive triangles sharing an edge. These
definitions, and decomposition theorems for retracts of the box product graph G2H
are derived in [9] when one factor is weakly-triangulated, or when one factor is
strongly-triangulated. Some incorrect proofs are fixed in [7].

In this paper, we replace the definition of weakly triangulated by the more general
definition of (2k + 1)-angulated, k ≥ 1, and extend the theorems of [9] to graphs
with larger odd girth. Let G be a connected graph with odd girth 2k + 1, k ≥ 1.
Then we define G to be (2k + 1)-angulated if every two vertices of G are joined
by a path such that each edge of the path is in some (2k + 1)-cycle; and we define
G to be strongly (2k + 1)-angulated if any two vertices of G are connected by a
sequence of (2k + 1)-cycles with consecutive cycles sharing at least one edge. Our
definition of (2k + 1)-angulated improves their definition of weakly triangulated
because a weakly triangulated graph is always 3-angulated, but a 3-angulated graph
is a weakly triangulated graph, plus some (possibly empty) set of edges which are
not in triangles. In addition, although a weakly triangulated graph need not be a
strongly triangulated graph, and vice versa, it is easy to see that strongly (2k+ 1)-
angulated graphs are also (2k + 1)-angulated.

Our results generalize the weakly triangulated and strongly triangulated the-
orems in [9] from k = 1 to any positive integer k. Lemma 2.2 is a direct gen-
eralization, but while the main ideas of our proofs of Lemmas 3.1, 3.2, 3.3, and
Theorems 3.4, 3.5 and 4.1 are similar, Nowakowski’s and Rival’s proofs depend on
the isometry between a graph and its retract while our proofs do not.

In Section 2, we prove the basic lemma that transfers smallest odd cycles through-
out a box product of graphs. In Section 3, we prove the strongest result possible
for (2k + 1)-angulated graphs, namely that if G is (2k + 1)-angulated and H is a
connected graph with odd girth at least 2k + 3, then any retract of G2H is S2T
where S is a retract of G and T is a connected subgraph of H. On the other hand,
if G and H are both (2k + 1)-angulated cores, then the core of G2H need not be
one of G, H, or G2H, see [3].

In Section 4, we prove that if G is strongly (2k+1)-angulated, and the odd girth
of H is at least 2k+1, then any retract of G2H is S2T where either S is a retract
of G and T is a subgraph of H, or |V (S)| = 1 and T is a retract of H. Hence we
show that if G and H are strongly (2k+ 1)-angulated cores, then the core of G2H
is either G, H or G2H. Let M(G) be the result of the Mycielski construction
on G. We show that if G is a 5-angulated graph which is chromatic-critical, then
M(G)2M(G) is a core. With a more general version of the Mycielski construction,
this result generalizes for chromatic-critical (2k + 1)-angulated graphs.

In Section 5, we consider the box product of two vertex-transitive graphs with
large odd girth. In particular, we show the box product of two Kneser graphs
K(n, 2n+ 1)2K(m, 2m+ 1) is a core for any integers m,n ≥ 2, as well as the box
product K(n, 2n + 1)2C2m+1 where m ≥ n ≥ 2. We conclude with some open
questions in Section 6.

2. Retracts of Box Products

In this section, we prove a basic lemma about where smallest odd cycles of G can
be mapped by a retraction ofG2H. Let R denote a retract of the box productG2H
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and let φ : G2H → R be the retraction from G2H to R. We know that R can be
considered as an induced subgraph of G2H. For x ∈ V (H), let Rx = (G2{x})∩R.
As observed in [9], if G is connected, then any retract R of G is connected, and Rx

is connected for any vertex x in H.

Definition 2.1. [9] Let G and H be finite connected graphs and S be a connected
subgraph of G. We say that S transfers in H if for every retract R of G2H,
whenever x, y ∈ V (H), and Ry is not empty, and S2{x} ⊆ R, then S2{y} ⊆ R.

A set C = {u1, u2, · · · , u2k+1} ⊆ V (G) is an odd cycle of G if u1 ∼ u2 ∼ · · · ∼
u2k+1 ∼ u1 and there are no other edges between the vertices in C.

Lemma 2.2. Let G and H be finite connected graphs, where the odd girth of G
is 2k + 1, and let R be any retract of G2H. Let C be an odd cycle in G of length
2k + 1. If there exists x, y ∈ H and u1 ∈ C such that C2{x} ⊆ R and (u1, y) ∈ R,
then C2{y} is in R.

Proof. It is enough to show that C2{y} is in R for some y adjacent to x in H
since H is connected. Let C = {u1, u2, · · · , u2k+1}. Since φ((u2, y)) is adja-
cent to (u1, y) and (u2, x), and both are in R, either φ((u2, y)) = (u2, y) ∈ R
or φ((u2, y)) = (u1, x). If φ((u2, y)) = (u2, y), that is, (u2, y) is fixed under φ, then
either φ((u3, y)) = (u3, y) ∈ R or φ((u3, y)) = (u2, x). Let us suppose that (uj+1, y)
is the first vertex in C2{y} that is not fixed under φ, that is, φ((ui, y)) = (ui, y)
for all 1 ≤ i ≤ j, then φ((uj+1, y)) = (uj , x) in R. Now φ((uj+2, y)) is adjacent to
both φ((uj+1, y)) = (uj , x) and (uj+2, x). This implies that φ((uj+2, y)) = (w1, x)
where w1 is adjacent to uj and uj+2 in G. Next φ((uj+3, y)) is adjacent to both
φ((uj+2, y)) = (w1, x) and (uj+3, x). This implies that φ((uj+3, y)) = (w2, x) where
w2 is adjacent to w1 and uj+3 in G. Continue this argument, then we can see
that φ((u2k, y)) = (w2k−j−1, x) where w2k−j−1 is adjacent to w2k−j−2 and u2k in
G. Finally, φ((u2k+1, y)) = (w2k−j , x) since it has to be adjacent to (w2k−j−1, x)
and (u2k+1, x). Also φ((u2k+1, y)) must adjacent to φ((u1, y)) = (u1, y), hence
w2k−j = u1. Thus,

φ(C2{y}) = {u1, · · · , uj}2{y} ∪ {uj , w1, w2, · · · , w2k−j−1, u1}2{x}

Hence {u1, · · · , uj , w1, w2 · · · , w2k−j−1} contains an odd cycle in G with size at
most 2k − 1. This contradicts the fact that the odd girth of G is 2k + 1. Hence
φ(C2{y}) = C2{y}.

3. One Factor is (2k + 1)-angulated

In this section we show that if G is (2k + 1)-angulated and H has odd girth at
least 2k+ 1, then 2k+ 1 cycles of G transfer in H. Hence Rx = Ry whenever both
Rx and Ry are not empty. We conclude with the theorems that if G is (2k + 1)-
angulated and H has odd girth at least 2k + 3, then any retract of G2H is the
form of S2T , where S is a retract of G and T is a subgraph of H.

Let G be a connected graph with odd girth 2k + 1 and H be a connected graph
with odd girth at least 2k + 3. We note that if C is a 2k + 1 cycle in G, then for
any vertex x ∈ V (H), φ(C2{x}) = C ′2{y} for some 2k + 1 cycle C ′ ⊆ G and
some vertex y ∈ V (H). Further, if both G,H have odd girth 2k + 1, then either
φ(C2{x}) = C ′2{y} for some 2k + 1 cycle C ′ ⊆ G and some vertex y ∈ V (H), or
φ(C2{x}) = {a}2C ′′ for some 2k + 1 cycle C ′′ ⊆ H and some vertex a ∈ V (G).
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Lemma 3.1. Let G be (2k + 1)-angulated and H be a connected graph with odd
girth at least 2k + 1, and R be a retract of G2H. Then Rx is (2k + 1)-angulated
for any x ∈ H.

Proof. Let φ : G2H → R be the retraction and let (a, x) and (b, x) be any two
vertices in Rx. Then there is a path P := {a = u0 ∼ u1 ∼ u2 ∼ · · ·un−1 ∼ un = b}
in G joining a and b such that each edge {ui−1 ∼ ui} is contained in some (2k+1)-
cycle Ci of G for 1 ≤ i ≤ n since G is (2k + 1)-angulated.

If the odd girth of H is at least 2k + 3, then φ(Ci2{x}) = C ′
i2{zi} where C ′

i is
some (2k+1)-cycle in G and zi ∈ V (H) for each 1 ≤ i ≤ n. Since φ(a, x) = (a, x) ∈
C ′

12{z1} , then z1 = x, and φ(C12{x}) = C ′
12{x}. Note that any two consecutive

cycles C ′
i2{x} and C ′

i+12{x} overlap on at least one vertex, hence we see that
zi = x and φ(Ci2{x}) = C ′

i2{x} for each 1 ≤ i ≤ n. Therefore, the vertices (a, x)
and (b, x) are joined by the path {a = u′0 ∼ u′1 ∼ u′2 ∼ · · · ∼ u′n−1 ∼ u′n = b}2{x},
and each edge {(u′i−1, x) ∼ (u′i, x)} is contained in the (2k+1)-cycle C ′

i2{x} in Rx

for 1 ≤ i ≤ n. Therefore, Rx is (2k + 1)-angulated.
If the odd girth of H is 2k + 1, then for each (2k + 1)-cycle Ci2{x}, either

φ(Ci2{x}) = C ′
i2{z} where C ′

i is an (2k+1)-cycle in G and z ∈ H or φ(Ci2{x}) =
{w}2{C ′′

i } where C ′′
i is a (2k + 1)-cycle in H and w ∈ G. Suppose that the

projection of φ(P2{x}) to G is {a = w0 ∼ w1 ∼ w2 · · · ∼ ws = b}. Then for each
wi there exists some ji such that (wi, zi) = φ(uji , x) ∼ φ(uji+1, x) = (wi+1, zi)
for each wi, and {(wi, zi), (wi+1, zi)} is contained in some (2k + 1)-cycle C ′

ji
2{zi}

in G2{zi}, 0 ≤ i ≤ s − 1. Recall that a = w0 ∈ C ′
j0

and (a, x) ∈ Rx, thus,
φ(C ′

j0
2{x}) ⊆ Rx by Lemma 2.2. In addition, every pair of consecutive cycles

overlap on at least one vertex. Therefore C ′
ji

2{x} ⊆ Rx by Lemma 2.2 for all
0 ≤ i ≤ s − 1. Hence the vertices (a, x) and (b, x) are joined by the path {a =
w0 ∼ w1 ∼ w2 · · · ∼ ws = b}2{x}, and each edge {(wi, x) ∼ (wi+1, x)} in the
path is contained in the (2k + 1)-cycle C ′

ji
2{x} in Rx. Therefore, Rx is (2k + 1)-

angulated.

Example 1: We note that the condition of H having odd girth at least 2k + 1
is necessary, because of the following example. Although C5 is 5-angulated, and
K3 is connected, we demonstrate a retraction from C52K3 to K22K3, and K2 is
not 5-angulated. Let the vertices of C52K3 be {a, b, c, d, e} × {1, 2, 3}. Define φ :
C52K3 → {a, b}2{1, 2, 3} as follows. The vertices (a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)
are fixed by φ. Let φ(c, i) = (b, i+ 1) modulo 3, φ(d, i) = (b, i+ 2) modulo 3, and
φ(e, i) = (b, i) modulo 3. Then it is straightforward to check that φ is a homomor-
phism.

Lemma 3.2. Let G be (2k + 1)-angulated and H be a connected graph with odd
girth at least 2k + 1. Then every (2k + 1)-cycle of G transfers in H.

Proof. Let C be an odd cycle of G and let φ : G2H → R be a retraction. Suppose
that C2{x} ⊆ Rx and there is some vertex (d, y) ∈ Ry. We show that C2{y} ⊆ Ry.
If d ∈ C, apply Lemma 2.2. Let d /∈ C, and choose any vertex a ∈ C. Then there
exists a path P := {a = u0 ∼ u1 ∼ u2 ∼ · · · ∼ un−1 ∼ un = d} in G such that each
edge {ui−1 ∼ ui} is contained in some (2k + 1)-cycle Ci of G for 1 ≤ i ≤ n (since
G is (2k + 1)-angulated).

If the odd girth of H is at least 2k + 3, then, using the same argument as in
Lemma 3.1, for each 1 ≤ i ≤ n, φ(Ci2{x}) = C ′

i2{x} where C ′
i is some (2k + 1)-

cycle in G. Note that φ(d, x) ∈ φ(Cn2{x}) = C ′
n2{x}, and φ(d, x) ∼ (d, y) in R,
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therefore, φ(d, x) = (d, x) and d ∈ C ′
n. Recall that (d, y) ∈ Ry, thus, C ′

n2{y} ⊆ Ry

by Lemma 2.2. In addition, every two consecutive cycles overlap on at least one
common vertex, therefore, C ′

i2{y} ⊆ Ry by Lemma 2.2 for all n−1 ≥ i ≥ 1. Thus,
(a, y) ∈ Ry since a ∈ C ′

1. This implies that C2{y} ⊆ Ry by Lemma 2.2.
Let the odd girth of H be 2k + 1. Then (d, x) ∼ (d, y) so φ(d, x) = (e, y) or

φ(d, x) = (d, z) where e ∼ d in G or y ∼ z in H. Assume that φ(d, x) = (e, y).
Denote the projection of φ(P2{x}) to G as {a = w0 ∼ w1 ∼ w2 · · · ∼ wt = e}. For
each wi, there exist some ji such that (wi, zi) = φ(uji

, x) ∼ φ(uji+1 , x) = (wi+1, zi)
and the edge {(wi, zi), (wi+1, zi)} is contained in some (2k + 1)-cycle C ′

ji
2{zi} in

G2{zi}, 0 ≤ i ≤ t− 1. Note that e ∈ C ′
jt−1

and (e, y) ∈ Ry, hence C ′
jt−1

2{y} ⊆ Ry

by Lemma 2.2. In addition, every two consecutive cycles overlap on at least one
vertex, therefore C ′

ji
2{y} ⊆ Ry by Lemma 2.2 for all t − 1 ≥ i ≥ 0. Thus,

(a, y) ∈ Ry since a ∈ C ′
j0

. This implies that C2{y} ⊆ Ry by Lemma 2.2.
Suppose that φ(d, x) = (d, z), where z ∼ y in H. The proof in this case follows

the same plan: project (P2{x}) to G and use Lemma 2.2.

Lemma 3.3. Let G be (2k + 1)-angulated and H be a connected graph with odd
girth at least 2k+ 1. If R is any retract of G2H, then Rx and Ry are identical for
any two vertices x, y ∈ H when both Rx, Ry are not empty.

Proof. If G is (2k + 1)-angulated, then Rx is (2k + 1)-angulated by Lemma 3.1. If
|Rx| ≥ 2, then there is a path joining any two vertices in Rx where each edge in
the path is contained in some (2k + 1)-cycle in Rx. If Ry is not empty, then each
of these cycles transfers to Ry by Lemma 3.2. Thus, if |Rx| ≥ 2 for at least one
vertex x ∈ H, then |Ry| ≥ 2 or Ry is empty for all y ∈ V (H). Any cycles in Ry

transfer back to Rx, hence Rx = Ry. If |Rx| ≤ 1 for all x ∈ V (H), then Rx has no
edges for any x, hence Rx is either empty or isomorphic to the one vertex graph
for each x.

Theorem 3.4. Let G be (2k+1)-angulated and H be a connected graph with odd
girth at least 2k + 1. If R is a retract of G2H, then R = S2T where where S, T
are connected and S ⊆ G and T ⊆ H.

Proof. Let R be a retract of G2H. If Rx and Ry are not empty where x, y ∈ V (H),
then Rx and Ry are identical by lemma 3.3. Hence R = S2T where S = {a ∈
V (G)| (a, y) ∈ Ry}, T = {y ∈ V (H)|Ry 6= ∅}. We know S is connected because Rx

is connected, and T is connected because H connected.

Theorem 3.5. Let G be (2k+1)-angulated and H be a connected graph with odd
girth at least 2k + 3. Let φ : G2H → R be a retraction. Then R = S2T where
S, T are connected where S is a retract of G and T ⊆ H.

Proof. Note that R = S2T by Theorem 3.4. Let x ∈ T . If |Rx| = 1, then |Rx| = 1
for all x ∈ T by Lemma 3.3. Therefore, R = T ⊆ H, but the odd girth of H is
greater than the odd girth of G, so G2H cannot map to H. Therefore S cannot
be a single vertex, and |Rx| ≥ 2 for all x ∈ V (T ).

Let (a, x) ∈ G2{x}, but not in S2{x}. For any (b, x) ∈ S2{x}, there is a
path {(b, x) ∼ (a1, x) ∼ · · · ∼ (am, x) = (a, x)} joining (b, x) and (a, x) such that
each edge in the path is contained in some (2k + 1)-cycle of G2{x} since G is
(2k + 1)-angulated. Say the cycles are C12{x}, C22{x}, . . . , Cm2{x}, where Ci

is a (2k + 1)-cycle of G for 1 ≤ i ≤ m. Then φ(Ci2{x}) ⊆ S2{zi} where each
zi ∈ V (H) for each 1 ≤ i ≤ m. Since C12{x} overlaps S2{x} at (b, x), then
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φ(C12{x}) ⊆ S2{x}, and since C1 overlaps C2, then φ(C2)2{x} ⊆ S2{x} as
well. As we continue along the path, we see that φ(Cm2{x}) ⊆ S2{x}, hence
φ(a, x) ∈ S2{x} since (a, x) ∈ Cm2{x}, so φ(G2{x}) ⊆ S2{x}. Hence S is a
retract of G.

Remark: This theorem does not hold if the odd girth of H is 2k + 1, see [3].

Corollary 3.6. Suppose G is a (2k+1)-angulated core, with a vertex that is fixed
by every automorphism of G, and H is a core with odd girth at least 2k+ 3. Then
G2H is a core.

Proof. Let φ : G2H → R be a retraction. Then R = G2T where T ⊆ H by
Theorem 3.5. The odd girth of G is less than the odd girth of H. Therefore,
for each x ∈ V (H), there exists yx ∈ V (T ) such that φ(G2{x}) = G2{yx}. Let
ψ : H → T by ψ(x) = yx. We will show that ψ is a homomorphism, hence T = H
because H is a core. It is clear that ψ is well-defined. Now let x ∼ z in H.
Then φ(G2{x}) = G2{yx} and φ(G2{z}) = G2{yz}. Let a be the vertex in G
which is fixed by every automorphism. Since x ∼ z, (a, x) ∼ (a, z). Therefore
(a, yx) = φ(a, x) ∼ φ(a, z) = (a, yz). Hence yx ∼ yz.

4. One Factor is Strongly (2k + 1)-angulated

Since strongly (2k+1)-angulated implies (2k+1)-angulated, all the lemmas from
the previous section apply to strongly (2k+1)-angulated graphs. In this section we
prove our main theorems about strongly (2k+1)-angulated graphs. Then we apply
the result to construct cores of box product form with one factor having a fixed
vertex under any automorphism of it. In particular, suppose M(G) is a Mycielski
construction of a graph G. If M(G) is a core, then M(G)2M(G) is a core. This
result can generalized to the box product of graphs with the construction similar
to the Mycielski construction to create 4-chromatic graphs of arbitrarily large odd
girth. In Example 1, both C5 and K3 are strongly angulated, it has a retract
K22K3, so the hypothesis in the theorem below cannot be relaxed to allow the odd
girth of H to be less than 2k + 1.

Theorem 4.1. Let G be strongly (2k+ 1)-angulated and H be a connected graph
with odd girth at least 2k + 1. Let φ : G2H → R be a retraction. Then R = S2T
where either S is a retract of G or |V (S)| = 1 and T is a retract of H.

Proof. If G is strongly (2k+1)-angulated, then it is (2k+1)-angulated. Therefore,
R = S2T by Theorem 3.4. If V (S) = {a}, then R = {a}2T ∼= T , hence T is
a retract of G2H. If |V (S)| 6= 1, choose two different vertices (a, x) and (b, x)
in S2{x} ⊆ G2{x}. Let φ : G2H → S2T be the retraction. We will show
φ : G2x → S2{x} for any x ∈ V (T ). For any (g, x) ∈ G2{x} that is not in
S2{x}, there is a sequence of (2k + 1)-cycles with consecutive cycles sharing at
least one edge joining (a, x) and (g, x) in G2{x}. Let C2{x} be the cycle that
contains (a, x). If φ(C2{x}) ⊆ Rx, then the image under φ of all of the cycles are
contained in Rx. In this case, φ(g, x) ∈ S2{x}. On the other hand, if φ(C2{x}) in
not contained in Rx, then φ(C2{x}) = {a}2C ′ for some 2k+ 1 cycle C ′ in H, and
therefore, all the cycles are contained in {a}2T . Hence φ(g, x) = (a, y) for some
vertex y ∈ V (H). The same construction shows that either φ(g, x) = (b, z) for some
vertex z ∈ V (H) which is impossible because a 6= b. Hence φ(g, x) ∈ S2{x} for
any (g, x) ∈ G2{x}.
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Corollary 4.2. Suppose G and H are strongly (2k+ 1)-angulated cores, then the
core of G2H is either G, H or G2H. Further, if G and H are homomorphically
inequivalent (that is, G 6→ H and H 6→ G), then G2H is a core.

Recall the Mycielski construction on a graph G with vertex set {u1, u2, . . . , un}:
let M(G) be the graph whose vertex set is

U = {u1, u2, . . . , un} ∪W = {w1, w2, . . . , wn} ∪ Z = {z}
The adjacencies in M(G) are as follows: ui ∼ uj in M(G) if ui ∼ uj in G, and
wi ∼ uj if ui ∼ uj in G, and z ∼ wi for 1 ≤ i ≤ n. Note that if G is chromatic-
critical, then M(G) is also chromatic-critical, hence a core.
Example 2: the Petersen graph [6], P , and the 4-chromatic Mycielski graph [2],
or Grötzsch graph, M(C5), are both strongly 5-angulated cores. It is well-known
that P2P is a core [1], and we give a new proof of this in Section 5. Since M(C5)
is 4-chromatic, but P is 3-chromatic, the core of P2M(C5) cannot be P . On the
other hand, the core of P2M(C5) cannot be M(C5) because P does not map to
M(C5). To see this, we observe that identifying two vertices of P would create
a triangle, but M(C5) has no triangles, so if P mapped to M(C5), there would
be a 10 vertex subgraph of the 11 vertex graph M(C5) which contained P . It is
straightforward to check that that cannot happen. Hence P2M(C5) is a core.

From Corollary 4.2, we can conclude that M(C5)2M(C5) is a core. If not, then
the core of M(C5)2M(C5) is M(C5), but M(C5) is a core, and has exactly one
vertex, u, of degree 5. Hence in any mapping of M(C5) to itself, u must go to u.
Now in M(C5)2M(C5), we can find two adjacent copies of M(C5), say M(C5)2{x}
and M(C5)2{y}. If M(C5)2M(C5) → M(C5), then (u, x) ∼ (u, y) both map to
the same vertex u, which cannot happen. Hence M(C5)2M(C5) is a core. The
same proof shows the following corollary.

Corollary 4.3. Suppose G is a strongly (2k+ 1)-angulated core, such that in any
automorphism of G, there is a vertex which remains fixed. Then the core of G2G
is a core.

Lemma 4.4. Let G be a strongly 5-angulated graph. Then M(G) is strongly 5-
angulated.

Proof. The vertex set of M(G) is U ∪W ∪Z. Any two vertices in U are connected
by a sequence of 5-cycles which overlap on at least an edge because U has the same
edges as G. If we consider two vertices w1, w2 ∈ W , then if u1 ∼ u2, the vertices
u1, u2, w1, w2, z form a 5-cycle. Hence z is in a 5-cycle with every vertex in U and
in W . If u1 6∼ u2, then the graph on U −{u1, u2}+ {w1, w2} is isomorphic to G, so
there is a sequence of consecutive 5-cycles that overlap on at least one edge between
w1 and w2. If we consider ui ∈ U and wj ∈ W , then if i = j, we already showed
these were in a 5-cycle together, and if i 6= j, then the graph on U − {uj} + {wj}
contains ui, wj and is isomorphic to G, so they are connected by a sequence of
5-cycles which overlap on at least an edge.

Corollary 4.5. Let G be a strongly 5-angulated graph. If M(G) is a core, then
M(G)2M(G) is a core. Hence if G is chromatic-critical, M(G) and M(G)2M(G)
are both cores.

Starting with graphs G of any odd girth, Van Ngoc and Tuza [11] and indepen-
dently Youngs [12] have used a construction similar to the Mycielski construction
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to create 4-chromatic graphs of arbitrarily large odd girth. It is straightforward to
show that Lemma 4.4 holds in this more general setting, hence so does a version of
Corollary 4.4.

These results cannot extend to G2G2G, or longer products, because if G is
strongly (2k+1)-angulated, then G2G is not strongly (2k+1)-angulated, although
it is (2k + 1)-angulated. See open question 6.2.

5. Constructing Cores using Vertex-Transitive Graphs

In this section, we use the results from section 3 and section 4 to construct cores
from vertex-transitive graphs. In particular, we show that K(n, 2n+1)2K(m, 2m+
1) is a core for any integers m,n ≥ 2.

Definition 5.1. A graph G is called vertex-transitive if there is an automorphism
f of G such that f(u) = v for any two vertices u and v of G.

Definition 5.2. Let α(G) be the size of a maximum independent set of G. The
independence ratio of a graph is defined to be i(G) = α(G)

|V (G)| .

IfG→ H andH is vertex transitive, then i(G) ≥ i(H) by the No-Homomorphism
Lemma [1]. Hence, if G,H are vertex transitive and homomorhically equivalent,
then i(G) = i(H).

Theorem 5.3. Let G and H be strongly (2k + 1)-angulated cores. If G,H are
vertex-transitive and i(G2H) < i(G), i(H). Then G2H is a core.

Proof. If G and H are strongly (2k + 1)-angulated, Corollary 4.2 tells us that
(G2H)∗ is G, H or G2H. Since the core of a vertex-transitive graph is vertex-
transitive [5], then i(G2H) = i((G2H)∗) by the No-Homomorphism lemma [1].
Hence G2H is a core.

Theorem 5.4. Let G and H be strongly (2k+1)-angulated cores. Let G be vertex-
transitive such that such that any two maximum independent sets have non-empty
intersection (that is, i(G2K2) < i(G) ). If G 6→ H, then G2H is a core.

Proof. If G and H are strongly (2k + 1)-angulated, Corollary 4.2 tells us that
(G2H)∗ is G, H or G2H. Now G2K2 6→ G, because G2K2 and G are both
vertex-transitive, but i(G2K2) 6= i(G). Therefore i(G2K2) 6→ G, hence G2H is a
core.

Theorem 5.5. Let G be a (2k + 1)-angulated vertex-transitive core such that
i(G2K2) < i(G). If H is a core with odd girth at least 2k+3, then G2H is a core.

Proof. Let φ : G2H → (G2H)∗. By Theorem 3.5, we know that (G2H)∗ = G2T
where T ⊆ H. Therefore, for each x ∈ V (H), there exists yx ∈ V (T ) such that
φ(G2{x}) = G2{yx}. Let ψ : H → T by ψ(x) = yx. We will show that ψ is
a homomorphism, hence T = H because H is a core. It is clear that ψ is well-
defined. Suppose that x ∼ z in H. Then we show that yx 6= yz. Otherwise,
φ(G2K2) ∼= G which contradicts i(G2K2) < i(G). Thus, yx 6= yz. Let a ∈ V (G).
Then (a, x) ∼ (a, z) in G2H, and (a′, yx) = φ(a, x) ∼ φ(a, z) = (a′′, yz). Hence
a′ = a′′ and yx ∼ yz. Hence ψ is a retraction from H to T , but H is a core, so
T = H.
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Definition 5.6. The Kneser graph K(n, s) is the graph whose vertices are the n-
subsets of an s-set where 1 ≤ n < s

2 , and two vertices are adjacent if and only if
the corresponding n-subsets are disjoint. Kneser graphs are vertex transitive. The
Petersen graph, P , is K(2, 5).

Recall that the odd girth of K(n, 2n + 1) is 2n + 1. If an odd cycle C2i+1

maps to K(n, 2n + 1), then i(C2i+1) = i
2i+1 ≥ n

2n+1 = i(K(n, 2n + 1)) by the
No-homomorphism lemma [1]. Hence i ≥ n which means that the odd girth of
K(n, 2n+ 1) is at least 2n+ 1. S. Stahl showed the existence of a (2n+ 1)-cycle in
K(n, 2n+1) in [10]. Therefore the odd girth ofK(n, 2n+1) is 2n+1. Here we have a
much stronger result which implies that K(n, 2n+1) is strongly (2n+1)-angulated.

Lemma 5.7. Any two vertices u, v ∈ V (K(n, 2n + 1)) are in some (2n + 1)-cycle
of K(n, 2n+ 1) together.

Proof. We will first find one (2n + 1)-cycle in K(n, 2n + 1). Since K(n, 2n + 1) is
vertex-transitive, it is enough to show that for any fixed vertex is in a (2n+1)-cycle
with any other vertex of K(n, 2n+ 1).

Consider the vertices ui = {(i−1)n+j | 1 ≤ j ≤ n} for 1 ≤ i ≤ n in K(n, 2n+1)
where addition is mod 2n+ 1. Let 1 ≤ t ≤ n. Note that the intersection of u1 and
u2t has t−1 elements: u1∩u2t = {n−(t−2), n−(t−3), . . . , n}. The intersection of
u1 and u2t+1 has n− t elements: u1∩u2t+1 = {1, 2, . . . , n− t}. Thus, the case t = 1
shows u1 ∼ u2 and the case t = n shows u1 ∼ u2n+1, but for every other value of
t, u1 6∼ u2t, u2t+1. Similarly, ui is adjacent to ui+1 and u2n+2−i for 2 ≤ i ≤ n+ 1.
Therefore, u1, u2, . . . , u2n+1 form a chordless (2n+ 1)-cycle in K(n, 2n+ 1).

We only need prove that any vertex v = {b1, b2, . . . , bn} is contained in some
(2n + 1)-cycle with u1 = {1, 2, 3, ...n}. If the n-subsets corresponding to u1 and v
are disjoint, then we permute {1, 2, 3, . . . , 2n + 1} as follows: take the product of
the 2-cycles (bj (n+j)) for each 1 ≤ j ≤ n, and fix everything else. This induces an
automorphism of K(n, 2n+1) which maps v to u2 and fixes u1. Hence u1 and v are
in some (2n+ 1)-cycle because u1 and u2 are. On the other hand, suppose u1 and
v have non-empty intersection, say |u1 ∩ v| = t− 1 for some 2 ≤ t ≤ n. Recall that
|u1 ∩ u2t| = t − 1. We permute {1, 2, 3, . . . , 2n + 1} by interchanging the elements
in u1 ∩ v with those in u1 ∩ u2t, and interchanging the elements in v − u1 ∩ v with
those in u2t −u1 ∩u2t. This induces an automorphism of K(n, 2n+ 1) which maps
v to u2t and fixes u1. Hence u1 and v are in some (2n + 1)-cycle because u1 and
u2t are.

Hence the Kneser graph K(n, 2n+ 1) is strongly (2n+ 1)-angulated graphs for
each integer n ≥ 1. For example, any two vertices of the Petersen graph are in some
5-cycle. By the Erdös-Ko-Rado Theorem, it is well-known that any two maximum
independent sets of K(n, 2n + 1) have non-empty intersection if n ≥ 2. Hence
K(n, 2n+ 1)2K2 6→ K(n, 2n+ 1) if n ≥ 2.

Corollary 5.8. K(n, 2n+ 1)2K(m, 2m+ 1) is a core for any integers m,n ≥ 2.

Proof. If m = n, then K(n, 2n + 1)2K(n, 2n + 1) is a core by Theorem 5.3. If
n < m, then K(n, 2n+ 1)2K(m, 2m+ 1) is a core by Theorem 5.5.

Corollary 5.9. K(n, 2n+ 1)2C2l+1 is a core for any integers l ≥ n ≥ 2.

Proof. If l = n, then K(n, 2n + 1)2C2n+1 is a core by Theorem 5.4. If l > n ≥ 2,
then K(n, 2n+ 1)2C2l+1 is a core by Theorem 5.5.
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Example 3: Although, using any 3-coloring, we see that P2C5 → K3, by Corol-
lary 5.9, P2C5 is a core. Another proof of this fact follows from the No-homomorphism
lemma (see [5]), since P2C5 is vertex-transitive and its independence ratio is 17

50 .
The independence ratio of any subgraph of P2C5 must have smaller denominator,
hence cannot equal 17

50 .

6. Questions

Question 6.1. In general, if G and H are (2k+ 1)-angulated cores, then (G2H)∗

need not be one of G, H, or G2H, see [3]. Are there extra hypotheses or G or H
which will mean this must be true?

Question 6.2. If G is a strongly (2k + 1)-angulated graph, then G2G is not
strongly (2k + 1)-angulated, but is (2k + 1)-angulated. What can be proved about
the core of the box product of G with itself m times? For example, it is well-known
that the core of the box product of C5 with itself m times is C5, see [8], and that
the box product of P with itself m times is a core, for each m, see [1].
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