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Abstract. In this paper we define and study the distinguishing chromatic
number, χD(G), of a graph G, building on the work of Albertson and Collins

who studied the distinguishing number. We find χD(G) for various families

of graphs and characterize those graphs with χD(G) = |V (G)|, and those
trees with the maximum chromatic distingushing number for trees. We prove

analogs of Brooks’ Theorem for both the distinguishing number and the dis-

tinguishing chromatic number, and for both trees and connected graphs. We
conclude with some conjectures.

1. Introduction

preprint

In [1], Albertson and Collins study the distinguishing number of a graph, inspired
by the following problem: given a ring of seemingly identical keys that open different
doors, how many colors are needed to distinguish them? In the language of graph
theory, this is the question of how many colors are needed to color the vertices of
the cycle Cn so that the only automorphism of the graph which preserves colors is
the identity. In this problem there is no requirement that the coloring be proper.
Interestingly, the cycles C3, C4, and C5 require 3 colors, but cycles with 6 or more
vertices need only 2 colors (see Theorem 2.2). Albertson and Collins study the
problem for graphs in general using the following definitions.

Definition 1.1. A labeling of the vertices of a graph G, h : V (G) → {1, . . . , r}, is
said to be r-distinguishing (or just distinguishing) provided no automorphism of the
graph preserves all of the vertex labels. The distinguishing number of a graph G,
denoted by D(G), is the minimum r such that G has an r-distinguishing labeling.

In this paper, we study the problem of finding r-distinguishing labelings which
are also proper colorings.

Definition 1.2. A labeling of the vertices of a graph G, h : V (G) → {1, . . . , r},
is said to be proper r-distinguishing (or just proper distinguishing) if it is a proper
labeling (i.e., coloring) of the graph and no automorphism of the graph preserves
all of the vertex labels. The distinguishing chromatic number of a graph G, χD(G),
is the minimum r such that G has a proper r-distinguishing labeling.

This definition is related to the following problem of assigning rooms to a set of
meetings. Represent the set of meetings using a graph where there is a vertex for
each meeting, and two vertices are adjacent precisely when the meetings conflict,
i.e., overlap in time. Assigning colors to the vertices of this graph would assign
rooms to the meetings, and a proper coloring would ensure that meetings that
conflict would be assigned to different rooms. The chromatic number of this graph
is the minimum number of rooms necessary to accommodate all the meetings. If the
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Graph G χ(G) D(G) χD(G)
1. Kn, ∆ = n− 1 n n n
2. Complement of Kn 1 n n
3. Ka1

j1 ,a2
j2 ,... ,ar

jr

∑
ji Thm 2.4

∑
jiai, Thm 2.3

4. P2n, ∆ ≤ 2 2 2 2
5. P2n+1, ∆ ≤ 2 2 2 3
6. C4, ∆ = 2 2 3 4
7. C5, ∆ = 2 3 3 3
8. C6, ∆ = 2 2 2 4
9. C2n, n ≥ 4, ∆ = 2 2 2 3
10. C2n+1, n ≥ 3, ∆ = 2 3 2 3
11. Petersen graph, ∆ = 3 3 3 4
12. T∆,h,∆ ≥ 2 2 ∆, Thm 3.5 ∆ + 1, Thm 3.4

13. Tree T 6= T∆,h,K1,K2 2 ≤ ∆− 1 Thm 3.5 ≤ ∆, Thm 3.4

14. G connected ≤ ∆ + 1 [2] ≤ ∆ + 1, Thm 4.2 ≤ 2∆, Thm 4.5

Figure 1. Table of results for χ, D and χD

coloring was done so that it was not only a proper coloring, but also a distinguishing
coloring, then the graph and its coloring would uniquely identify the meetings as
well as specifying which room each would use.

We make analogous definitions for rooted graphs. A rooted graph (G, z) is a graph
G together with a vertex z ∈ V (G) designated as the root. A labeling of the vertices
of a rooted graph G, h : V (G) → {1, . . . , r}, is said to be r-distinguishing provided
no automorphism of the graph preserves all of the vertex labels and fixes the root
z. The distinguishing chromatic number of a rooted graph (G, z), χD(G, z), is the
minimum r such that (G, z) has a proper r-coloring that is also r-distinguishing.

2. Preliminary Results

In this section we present a table of results that shows the chromatic number, the
distinguishing number and the distinguishing chromatic number for Kn and various
families of connected graphs. In addition, we characterize those graphs G for which
the only way to achieve a proper r-distinguishing labeling is to use a different color
for each vertex, i.e., χD(G) = |V (G)|. We begin with a few observations.

Observations 2.1. 1. For any graph G, χD(G) ≥ max{χ(G), D(G)}.
2. If a graph G has no non-trivial automorphisms, then χD(G) = χ(G) and

D(G) = 1. Hence χD(G) can be much larger than D(G).
3. Let G∨H be the join of graphs G and H, which consists of a copy of G, a copy

of H and all possible edges between them. Then χD(G∨H) = χD(G)+χD(H),
just as χ(G ∨H) = χ(G) + χ(H).

Theorem 2.2. The entries in Figure 1 are correct.

Proof. The chromatic numbers for the classes of graphs given in this table are
well-known, we justify the entries in the columns labeled D(G) and χD(G).
Complete multipartite graphs (rows 1–3): The distinguishing chromatic num-
ber of a complete multipartite graph is determined by Theorem 2.3 and the distin-
guishing number of a complete multipartite graph is determined by Theorem 2.4.
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Hence, the example of complete bipartite graphs show that χD(G) can be much
larger than χ(G).
Paths (rows 4–5): The path Pm has a non-trivial automorphism for all m ≥ 2, thus
D(Pm) ≥ 2. For even values of m, any proper 2-coloring of Pm is also distinguishing,
thus χD(P2m) = D(P2m) = 2. For odd values of m, the labeling that uses color
two for one end-vertex and color 1 for the remaining vertices is distinguishing, thus
D(P2n+1) = 2. However, it is not a proper coloring and any proper coloring using
two colors is not distinguishing, so χD(P2n+1) ≥ 3. A 3-labeling that is proper and
distinguishing is achieved by using 1 for an end-vertex and alternating 2’s and 3’s
for the remaining vertices, thus χD(P2n+1) ≤ 3. The results for the distinguishing
chromatic number of paths can also be obtained as special cases of Theorem 3.4
where P2n+1 = T2,n and P2n is a tree which is not of the form T∆,h.
Cycles (rows 6–10): The cycle C4 is the complete multipartite graph K2,2 = K22

which has D(C4) = 3 and χD(C4) = 4 as discussed above. The distinguishing
numbers of cycles are computed in [1] as follows. The cycle C5 has D(C5) = 3 and
the cycle Cn with vertices labeled consecutively as v0, v1, . . . , vn−1 for n ≥ 6 has
D(Cn) = 2 using color 1 for vertices v0, v2 and v3 and color 2 for the remaining
vertices.

We next consider the distinguishing chromatic number of cycles Cn for n ≥ 5.
It is easy to see that χD(C5) = 3 and somewhat harder to check that χD(C6) = 4.
For n ≥ 7, let the vertices be labeled consecutively as v0, v1, . . . , vn−1 and use color
3 for vertices v0 and v3, color 2 for vertices vi where i 6= 3 is odd and color 1 for
vertices vi where i 6= 0 is even. This shows χD(Cn) ≤ 3 for n ≥ 7. All proper
2-colorings of Cn have color-preserving automorphisms, thus χD(Cn) > 2 for all n
and in particular, χD(Cn) = 3 for n ≥ 7.
Misc. (rows 11–14): The tree Tk,h is defined in Section 3, Definition 3.3. The
remaining results for D(G) and χD(G) in Figure 1 are shown in Theorems 2.5, 3.4,
3.5, 4.2, and 4.5.

Theorem 2.3. Let G be a graph. Then χD(G) = |V (G)| iff G is a complete
multipartite graph.

Proof. (⇐=) Suppose that two vertices of G are given the same color in a proper
coloring. Since they are not adjacent, they must be in the same partite set. How-
ever, there is an automorphism of G which interchanges those two vertices and
leaves the rest of the graph fixed. Alternatively, one can use Observation 2.1.3.
(=⇒) For a contradiction, assume that G is not a complete multipartite graph, but
χD(G) = |V (G)| = n. Then G must have non-adjacent vertices, otherwise G = Kn

which is a complete n-partite graph. Further, G must have a pair of non-adjacent
vertices, u, v, with different neighborhoods. Color both u and v using color 1, and
color the remaining vertices with 2, 3, . . . , n − 1, where each gets a distinct color.
This is a proper coloring, which is (n − 1)-distinguishing. So χD(G) ≤ n − 1, a
contradiction.

Let Ka1
j1 ,a2

j2 ,... ,ar
jr denote the complete multipartite graph that has ji partite

sets of size ai for i = 1, 2, . . . , r and a1 > a2 > · · · > ar. In finding the distinguish-
ing number of a complete multipartite graph, we need enough colors to distinguish
between vertices in the same partite set as well as distinguishing between partite
sets of the same cardinality.
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Figure 2. (a) The Petersen graph, P with a proper 3-coloring,
and (b) KG(2, 5).

Theorem 2.4. Let Ka1
j1 ,a2

j2 ,... ,ar
jr denote the complete multipartite graph that

has ji partite sets of size ai for i = 1, 2, . . . , r and a1 > a2 > · · · > ar. Then
D(Ka1

j1 ,a2
j2 ,... ,ar

jr ) = min{p :
(

p
ai

)
≥ ji for all i}.

Proof. Let G = Ka1
j1 ,a2

j2 ,... ,ar
jr . There is an automorphism of G that interchanges

any pair of vertices in the same partite set, thus each vertex in a partite set must
get a different color. Furthermore, there must be enough colors to distinguish one
partite set from the others of the same size. So the sets of colors that appear on the
vertices of each of the ji partite sets of size ai must be distinct, hence

(
D(G)

ai

)
≥ ji

for each i. Any such coloring is distinguishing, so D(G) is the smallest integer p
for which

(
p
ai

)
≥ ji for all i.

Theorem 2.5. If P is the Petersen graph then χD(P ) = 4.

Proof. It is shown in [1] that D(P ) = 3. Since χ(P ) = 3, we need only show
that χD(P ) > 3 and χD(P ) ≤ 4. Recall that the Kneser graph, KG(r, s), is
the graph whose vertices are in a 1-1 correspondence with the r-sized subsets of
{1, 2, 3, . . . , s}, and there is an edge between two vertices if their corresponding
r-subsets are disjoint [5]. The Petersen graph is KG(2, 5), see Figure 2(b). By
the Erdös-Ko-Rado Theorem [5], a maximum independent set in a Kneser graph
is formed by choosing all subsets that contain a fixed element. Thus, it is easy to
show that every 3-coloring of the Petersen graph has color class partition 4, 3, 3,
and is the same up to isomorphism. Without loss of generality, we may assume
that P is colored as in Figure 2(a).

Let σ : P → P permute {1, 2, 3, 4, 5} by interchanging 3 and 4, that is: σ({1, 3})
= {1, 4}, σ({1, 4}) = {1, 3}, σ({2, 3}) = {2, 4}, σ({2, 4}) = {2, 3}, σ({3, 5}) =
{4, 5}, σ({4, 5}) = {3, 5} and σ fixes the other 4 vertices. Clearly σ is an automor-
phism of P , and one can check that σ preserves the colors in Figure 2(a). Hence
χD(P ) > 3. To see that χD(P ) ≤ 4, change the color of {2, 4} and {4, 5} to color 4
in Figure 2. For each vertex v, let c(v) be the multiset of colors that appear on the
neighbors of v after the recoloring. For example, if v is the top vertex in Figure 2
then c(v) = {3, 3, 4}. It is easy to check that the sets c(v) are distinct for vertices
v of the same color. Thus there is no non-trivial automorphism that preserves the
colors and our coloring is proper and distinguishing. The idea of this coloring is
the inspiration for the definition of the ith local distinguishing number by Cheng
and Cowen [4], with i = 1.
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3. Resuts for Trees

In this section we prove two results about the distinguishing chromatic number
of trees. We characterize those trees with distinguishing chromatic number equal to
two and prove an analog of Brooks’ Theorem. In doing so we find the distinguishing
number of Tk,h (defined in Definition 3.3).

We begin with some terminology and background, following [6]. A rooted tree
(T, z) is a tree T with a distinguished vertex z, the root. The depth or level of a
vertex v is its distance from the root, and the height of a rooted tree is the greatest
depth in the tree. The parent of v is the vertex immediately following v on the
unique path from v to the root. Two vertices are siblings if they have the same
parent. The eccentricity of a vertex v in a graph G is the distance from v to a
vertex farthest from v. The center of G is the subgraph induced by those vertices
with minimum eccentricity. It is well-known that the center of a tree is either a
single vertex or an edge.

Theorem 3.1. Let T be a tree with at least 2 vertices. Then χD(T ) = 2 iff T
has no non-trivial automorphisms, or the center of T is an edge {x, y} and T has
precisely one non-trivial automorphism which interchanges x and y.

Proof. (⇐=) Since T has at least two vertices, χD(T ) ≥ χ(T ) = 2. Our goal
is to show χD(T ) ≤ 2, that is, there exists a proper coloring of T which is 2-
distinguishing. There is only one proper 2-coloring of the tree T (up to reversing all
colors). If T has no non-trivial automorphisms then this coloring is 2-distinguishing
as desired.

Otherwise, suppose the center of T is an edge {x, y}, T has precisely one non-
trivial automorphism σ, and σ(x) = y and σ(y) = x. Since {x, y} ∈ E(T ), vertices
x and y must get different colors. But then σ does not preserve colors and our
coloring is 2-distinguishing as desired.
(=⇒) Now suppose χD(T ) = 2.
Case 1: The center of T is a vertex v.

Consider a proper 2-distinguishing labeling of T , where, without loss of gener-
ality, we may assume vertex v gets color 1. Since this coloring of T is proper, all
vertices which are at an even distance from v are colored 1, and all vertices which
are at an odd distance from v are colored 2. However, any automorphism of T
must fix v, because it is the center of T , and therefore also preserve the parity of
distances from v, and thus also preserves this 2-coloring. Since χD(T ) = 2, T can
have no nontrivial automorphisms.
Case 2: The center of T is an edge {x, y}.

Let T = Tx ∪{x, y}∪Ty where x ∈ Tx, y ∈ Ty are the connected components re-
maining after removing the edge {x, y} from T . Consider a proper 2-distinguishing
labeling of T , where, without loss of generality, we may assume vertex x gets color
1, and y gets color 2. If T has no non-trivial automorphisms, then we are done.
Otherwise, let σ be a non-trivial automorphism of T . Then σ must either fix both
x and y or interchange them. First, suppose that σ fixes both x and y. As in
Case 1, all vertices in Tx which are at an even distance from x are colored 1, and
all vertices in Tx which are at an odd distance from x are colored 2, and σ must
preserve these distances (and hence colors) since σ fixes x. Similarly, σ preserves
the colors in Ty, and thus preserves all colors in T . Therefore, since χD(T ) = 2, σ
must be the identity, which contradicts its choice as a non-trivial automorphism.
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Figure 3. T4,3 with a proper 5-distinguishing labeling

Now to prove uniqueness, suppose that there are two distinct automorphisms of
T , σ, τ , that interchange x and y. Then the composition σ ◦ τ−1 fixes x and y, and
therefore is the identity. Hence σ = τ , which is a contradiction.

Lemma 3.2. A labeling of a rooted tree (T, z) in which each vertex is colored
differently from its siblings is a distinguishing labeling. A labeling of a rooted tree
(T, z) in which each vertex is colored differently from its siblings and from its parent
is a proper distinguishing labeling.

Proof. Let (T, z) be a rooted tree whose vertices are colored so that each vertex is
colored differently from its siblings (and from its parents). Let σ be an automor-
phism of tree T which preserves colors and fixes the root z. We use induction on
the level of a vertex to show that all vertices must be fixed by σ. The only vertex
at level 0 is the root z, which is fixed. Assume all vertices at level h are fixed by σ,
and let x be a vertex at level h + 1. By induction, x’s parent (at level h) is fixed
by σ, thus vertex x must be mapped to itself or one of its siblings. But x is colored
differently from its siblings and σ preserves colors, hence x is fixed by σ.

In some situations, the structure of a graph will fix a particular vertex under
any automorphism, and in other situations, this will happen only after some of
the vertices are assigned colors. We say a vertex u in a graph G in which some
vertices have been assigned colors is pinned if u is fixed by every automorphism
that preserves colors no matter how the coloring of G is completed. Our goal in
finding the distinguishing number or the distinguishing chromatic number is to pin
all the vertices, using as few colors as possible.

Definition 3.3. For k ≥ 2, let Tk,h be the rooted tree in which all leaves are at
the same distance h from the root, and every vertex that is not a leaf has degree k
(including the root).

For example, the tree T4,3 is shown in Figure 3 together with a proper 5-
distinguishing labeling. Note that T2,h = P2h+1.

A classic result in graph theory is Brooks’ Theorem which states that χ(G) ≤
∆(G)+1 for every connected graph with equality holding only for complete graphs
and odd cycles. The following is a distinguishing chromatic number analogue of
Brooks’ Theorem applied to trees.

Theorem 3.4. Let T be a tree. Then χD(T ) ≤ ∆(T ) + 1. Furthermore, equality
is achieved iff T = T∆,h for some h ≥ 0.
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Proof. If T is a single vertex, then the statement of the theorem is obviously true.
We next prove that T has a proper (∆+1)-distinguishing labeling using cases based
on whether the center of T is a vertex or an edge.

First, consider the case where the center of T is a vertex v and let h be the height
of the rooted tree (T, v). Since v is the center of T , all automorphisms of T take v to
itself, so v is already pinned. Color v with color 1. We color the remaining vertices
of T using colors from the set {1, 2, 3, . . . , ∆+1} as follows. By induction, we may
assume that all vertices whose distance to vertex v is less than or equal to i− 1 are
colored properly and pinned, for 1 ≤ i ≤ h. Consider the vertices at distance i from
v in some fixed order and color each greedily so that each vertex gets the lowest
color which has not appeared on its parent or siblings. This is possible because
there are ∆ + 1 colors available to distinctly color a parent and at most ∆ siblings.
We will never use color ∆ + 1 except possibly for one vertex on level 1. Since each
vertex is assigned a color different from its parent, this is a proper coloring. By
Lemma 3.2, this is a (∆ + 1)-distinguishing coloring.

Second, consider the case where the center of T is an edge, {x, y}. Any auto-
morphism of T must either fix both x and y, or interchange them. Color x with 1
and y with 2. This pins x and y. Remove the edge between x and y, and consider
x as the root of its subtree and y as the root of its subtree, and proceed to color
each subtree as in the preceding case. Now we will never use color ∆ + 1, since x
(respectively y) has at most ∆ − 1 children in its subtree. Again by Lemma 3.2,
this is a proper ∆-distinguishing coloring.

This completes the proof that χD(T ) ≤ ∆+1. In the remainder of the proof, we
justify the last sentence of the theorem. First we show that χD(T∆,h) = ∆ + 1 for
any h. For a contradiction, suppose there is a distinguishing coloring of T∆,h using
colors {1, 2, 3, . . . , ∆}. The root v of T∆,h has ∆ children, therefore some color
must be used at least twice on the children of v. Let u, w be two siblings at the
greatest depth d which are colored the same. We construct a non-trivial involution
σ of T∆,h which preserves the coloring. Let σ fix all vertices which are not in the
subtree U rooted at u or the subtree W rooted at w. Also, let σ interchange u
and w. By induction on the height assume we have defined the action of σ on the
vertices in U ∪W at level d + i, 0 ≤ i ≤ h − d. Let p, q be vertices at level d + i
such that σ(p) = q and σ(q) = p. Note that this means that p and q have the same
color, say color 1. By definition, the children of p have distinct colors, namely,
{2, 3, 4, . . . , ∆} and the same is true for q. Map the children of p to the children of
q by matching colors. This process can be repeated for each pair of vertices at level
d+ i interchanged by σ to define the action of σ on vertices at level d+ i+1. Thus,
σ is a non-trivial automorphism which preserves colors, a contradiction. Hence
χD(T∆,h) > ∆. Since the above proof shows that χD(T∆,h) ≤ ∆ + 1, it must be
that χD(T∆,h) = ∆ + 1.

Finally, we assume that T is a tree with χD(T ) = ∆ + 1 and prove T = T∆,h for
some h. From our proof above, the center of T must be a single vertex v of degree
∆. We will show T = T∆,h where h is the height of the rooted tree (T, v). If any
two children of v have two different subtrees, then we can color these two children
with the same color and proceed as in the first case above to get χD(T ) ≤ ∆, a
contradiction. Thus, all children of v have identical subtrees. If these identical
subtrees are empty, then T = T∆,1.

For a contradiction, assume T 6= T∆,h. Then there must exist a smallest l < h
and a vertex x at level l with fewer than ∆− 1 children. We know l ≥ 1.
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Since the subtrees rooted at the vertices of level 1 are identical, each level 1
vertex has some descendant at level l which has fewer than ∆ − 1 children. Let u
be the level 1 vertex on the unique path from x to v and let w be any other level
1 vertex. Assign color 1 to vertex v at level 0, and color 2 to vertices u, w. Color
the remaining ∆− 2 level 1 vertices distinctly from {3, 4, 5, . . . , ∆}, and color their
subtrees properly in a way that pins every vertex, using only ∆ colors, as we have
previously shown can be done. We will color the subtrees U , rooted at u, and W ,
rooted at w to complete this ∆-distinguishing coloring of T .

Color the vertices in U ∪ W at levels 2 through l as before using only colors
1, 2, 3, . . . , ∆. Since each such vertex at levels 2 through l − 1 has ∆− 1 children,
the set of colors that are used on the children of each parent is determined by the
color assigned to the parent. Since u and w are the only level 1 vertices with the
same color, we need only consider automorphisms of T which interchange u and w
or which fix u and w.

First consider automorphisms that preserve colors and fix u and w. From
Lemma 3.2, the subtrees induced by U and W have ∆-distinguishing colorings.
These together with the coloring of the rest of T gives a ∆-distinguishing coloring
of T , contradicting our hypothesis that χD(T ) = ∆+1. Hence there is no nontrivial
automorphism which fixes u and w and preserves colors.

It remains to consider automorphisms that preserve colors and interchange u
and w. Such automorphisms must interchange each vertex on level i, 3 ≤ i ≤ l, in
U with a uniquely determined vertex on level i, in W , that has the same sequence
of colors in a path back to vertex v. This uniquely defines vertex u1 in W as the
vertex which could be interchanged with x.
Case 1: x has at least one child.

Without loss of generality, assume vertex x has color 1. Use color 2 on one of
x’s children, and color the remaining children (if any) using distinct colors from
{3, 4, . . . , ∆− 1}. If u1 has ∆− 1 children, then no automorphism can interchange
x and u1 because x was chosen to have fewer than ∆ − 1 children. Otherwise,
if u1 has at most ∆ − 2 children, then color these children using distinct colors
from {3, 4, . . . , ∆}, and this ensures that no color-preserving automorphism can
interchange x and u1. Finish the coloring of T by coloring each set of siblings
differently and distinctly from their parent.
Case 2: x has no children.

Since l < h, there exists some vertex u2 at level l in W which has a child. If
u2 6= u1, recolor the vertices in W so that the path from w to u2 has the same
sequence of colors in the path from u to x, and the other vertices in W are colored
so that siblings are colored differently and distinctly from their parent. With this
coloring, u2 is the only vertex in W which could be interchanged with x by a color-
preserving automorphism. However, no automorphism can interchange x with u2

because u2 has children and x does not. As before, finish the coloring of T by
coloring each set of siblings differently and distinctly from their parent.

By the coloring we have chosen in each case, there is no automorphism that
interchanges u and w and preserves colors. This gives a ∆-distinguishing coloring
of T , contradicting our hypothesis that χD(T ) = ∆ + 1.

We have just shown that for trees T , χD(T ) ≤ ∆(T ) + 1, with equality precisely
when T = T∆,h. The next Brooks’ Theorem analog shows that it requires only one
extra color to achieve a proper distinguishing coloring.
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Theorem 3.5. For any tree, D(T ) ≤ ∆. Furthermore, equality is achieved iff
T = T∆,h for some h ≥ 0.

Proof. Cheng and Tymoczko [3, 8] have independently shown that if T is a tree
with maximum degree ∆ ≥ 2, then D(T ) ≤ ∆. Thus, we need only show that
D(T∆,h) ≥ ∆, and that if T 6= T∆,h, then D(T ) ≤ ∆ − 1. For the first statement,
suppose that there is a distinguishing coloring of T∆,h with ∆− 1 colors. If h = 1,
then every child of the root must be colored distinctly, and there are ∆ such children,
hence we reach a contradiction. If h ≥ 2, then consider the leaves of T∆,h, which
are in sets of siblings of size ∆− 1. If any two leaves that are siblings get the same
color, there is a color-preserving automorphism of T∆,h that interchanges them and
fixes all other vertices. Thus the leaves in each sibling set must receive different
colors. There are ∆ − 1 siblings and ∆ − 1 colors, so all colors are used on each
set of leaf siblings. Consider the siblings on level h − 1. If any two siblings are
colored the same, their leaf children each have the same set of colors, so there is
a natural correspondence between them. Thus every set of siblings on level h − 1
must also be colored distinctly, and use all ∆ − 1 colors. Proceeding by induction
up the levels of T∆,h, we see that set of children of the root must also be colored
distinctly, but there are ∆ such children, hence we reach a contradiction of the fact
that there is a distinguishing ∆− 1 labeling.

Secondly, suppose that T is not T∆,h for any ∆, h. We will show that D(T ) ≤
∆− 1.

Case 1: The center of T is an edge, xy.
Color x with color 1 and y with color 2. For the subtrees rooted at x AND y,

color each set of siblings in T distinctly. Since x and y are adjacent, every vertex
in each subtree has at most ∆− 1 children, hence we can do this with ∆− 1 colors.
By Lemma 3.2, this is a (∆− 1)-distinguishing labeling.

Case 2: The center of T is a vertex v.
If the degree of v is strictly less than ∆, color each set of siblings in T distinctly.

By Lemma 3.2, this is a (∆ − 1)-distinguishing coloring. Otherwise, the degree of
v is ∆. Consider the subtrees of T rooted at the children of v. If there are two
non-isomorphic subtrees, color the corresponding children of v the same, and all the
other children of v distinctly, using ∆−1 colors, and color the rest of the tree so that
the siblings sets are colored distinctly. Then no automorphism can interchange the
children of v which are colored the same, so they are fixed by every automorphism.
By the same argument as in Lemma 3.2, this is a (∆− 1)-distinguighing labeling.

If all subtrees rooted at the children of v are isomorphic, color the leftmost ∆−2
children of v distinctly from the set {1, 2, 3, . . . , ∆ − 2} and the last two children,
say x, y, both with color ∆ − 1. Color all other sibling sets distinctly. Then there
is only one possible non-trivial automorphism σ which preserves the colors. This
automorphism is an involution which interchanges the subtrees rooted at x and y,
in a unique way, and fixes the subtrees rooted at the other children of v. Let z
be a vertex with shortest distance j to v such that the degree of z is less than ∆,
and z is contained in the subtree rooted at y. Each of z and σ(z) have less than or
equal to ∆− 2 children, and each set of children must be colored distinctly. If any
such z has at least one child, since there are ∆− 1 choices of colors, we change the
labeling (if necessary) so that the children of z receive a different set of colors than
the children of σ(z) in the subtree rooted at x. This is then a (∆−1)-distinguishing
labeling. If all z on level j in the subtree rooted at y, then, since all subtrees rooted
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at the children of v are isomorphic, all vertices at level j have no children and every
vertex on levels 0 through j − 1 has degree ∆. Hence T = T∆,j .

4. Brooks’ Theorem Bounds for Connected Graphs

Theorems 3.4 and 3.5 are Brooks’ Theorem results for χD(T ) and D(T ) where
T is a tree. In this section, we prove analogues of Brooks’ theorem for D(G)
(Theorem 4.2) and for χD(G) (Theorem 4.5) where G is a connected graph.

The statement in the first sentence of Theorem 4.2 is due to Mike Albertson and
Karen Collins in 1999 (personal communication). The theorem was independently
discovered by Klavžar, Wong and Zhu [7]. Our proof yields a polynomial-time
algorithm as detailed in Corollary 4.3. We begin with a lemma and let N(x) denote
the set of neighbors of x.

Lemma 4.1. Suppose G is a connected graph and v is a vertex of G and (T, v) is
a breadth-first search spanning tree rooted at v. Let φ be a coloring (resp. proper
coloring) of V (G) so that the vertices at distance at most i from v in T are fixed
by every automorphism of G which preserves colors, and the vertices at distance
greater than i from v in T are colored so that each vertex is colored differently from
its siblings in T . Then φ is a distinguishing labeling (resp. proper distinguishing
labeling).

Proof. Let σ be an automorphism of G which preserves colors. Consider the vertices
of G in the order they were selected in forming T , namely v, v1, v2, . . . , vn. Since
i ≥ 0, σ(v) = v. By induction, we may assume v, v1, v2, . . . , vj are fixed by σ
and consider vj+1 at distance greater than i from v in T . Its parent, x, is fixed,
so σ(vj+1) ∈ N(x). We know σ(vj+1) is not a sibling of vj+1 in T because σ is
color-preserving and these siblings are colored differently. By construction, all other
vertices in N(x) are in the set v, v1, v2, . . . , vj and hence are already fixed by σ.
Thus σ(vj+1) = vj+1.

Theorem 4.2. If G be a connected graph with maximum degree ∆, then D(G) ≤
∆ + 1. Furthermore, equality is achieved if and only if G = K∆+1,K∆,∆ or C5.

Proof. By Theorem 2.2, D(G) = ∆+1 for G = K∆+1,K∆,∆ and C5, thus it remains
to show D(G) ≤ ∆ for all other graphs G. The only connected graph with ∆ = 1
is K2, and the connected graphs with ∆ = 2 are paths and cycles, all of whose
distinguishing numbers are in Table 1. For the rest of the argument, we assume
that ∆ ≥ 3. Let G be a connected graph with ∆ ≥ 3 other than K∆+1 or K∆,∆.

Case 1: G has a vertex v with degree less than ∆.
Let T be a breadth-first search spanning tree of G with v as its root. Color v with

color ∆ and retire the color ∆. Color the remaining vertices so that each vertex is
colored differently from its siblings in T . This is possible since each sibling set has
at most ∆−1 vertices. By Lemma 4.1 with i = 0, this coloring is ∆-distinguishing.

Case 2: G is regular of degree ∆ and there is a triple of vertices v, w, y where
vw, vy ∈ E(G) and N(w)− y = N(y)− w.

First suppose N(x) − y = N(y) − x for all vertices x with xv ∈ E(G). If
wy ∈ E(G) then G = K∆+1 and if wy 6∈ E(G) then G = K∆,∆, each yielding a
contradiction.

Otherwise, since ∆ ≥ 3, there exists a vertex x 6= w, y such that vx ∈ E(G), but
N(x) − y 6= N(y) − x. Rearrange T as necessary to let w be chosen as the first
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child of v, and x, y chosen as the last two children of v. Color v with color ∆ and
retire the color ∆. Color the leftmost ∆− 2 neighbors of v distinctly from the set
{1, 2, 3, . . . , (∆ − 2)}, so w has color 1, and use color ∆ − 1 for both x, y. Thus,
w and y have distinct colors. Proceed as in Case 1 to extend the coloring to the
descendants of neighbors of v, coloring the children of each vertex distinctly. We
show this coloring is ∆-distinguishing.

Vertex v is pinned, and since the leftmost ∆ − 2 children of v in T are labeled
distinctly, they must also be pinned. Each descendant in T of these children is also
pinned. If x, y were also pinned, in spite of being labeled with the same color, then
the coloring is ∆-distinguishing. So, we need only consider an automorphism, say
σ, which interchanges x and y. Since N(x) − y 6= N(y) − x and G is ∆-regular,
there exists a vertex u 6= x with uy ∈ E(G) but ux 6∈ E(G). Thus u = w or
u ∈ N(y)− w = N(w)− y and so u is either one of the leftmost ∆− 2 children of
v in T or a child of w in T . In either instance, u is pinned and we have σ(u) = u.
However, σ(y) = x so uy ∈ E(G) implies σ(u)σ(y) = ux ∈ E(G), a contradiction.

Case 3: G is regular of degree ∆ and N(x)− y 6= N(y)− x for every triple of
vertices v, x, y where vx, vy ∈ E(G).

Choose any vertex v, and let T be a breadth-first search spanning tree with
v as its root. Color v with color ∆ and retire the color ∆. Label the leftmost
∆− 2 neighbors of v distinctly from the set {1, 2, 3, . . . , (∆− 2)}, and the last two
neighbors, say x, y, both with ∆ − 1. Then v is pinned, and since the leftmost
∆ − 2 neighbors of v are labeled distinctly, they must also be pinned. Proceed as
in Case 1 to extend the labeling to the rest of the graph, coloring the children in
T of each vertex distinctly, except for y and its descendants in T . If there is no
non-trivial automorphism which interchanges x and y, we extend the labeling by
coloring the descendants in T of y so that each vertex is colored distinctly from its
siblings. By Lemma 4.1, this is a ∆-distinguishing labeling.

Otherwise, v its leftmost ∆−2 children and all their descendants in T are pinned,
and any non-trivial automorphism, σ, that preserves the colors must interchange
x and y. Let Sx be the set of children of x in T that are not neighbors of y and
let Sy be the set of children of y in T (which will not be neighbors of x because x
comes before y in the breadth-firstsearch spanning tree T ). Since σ interchanges x
and y it must also interchange Sx with Sy.

We first show that |Sy| > 0. Since N(y) − x 6= N(x) − y, and G is regular of
degree ∆, there must be some vertex z 6= x which is adjacent to y but not x. Then
z cannot be any vertex already pinned because σ interchanges x and y. Thus, z
must be a child of x or y in T and since zx 6∈ E(G) we have z ∈ Sy. This means
that |Sy| > 0.

Subcase 3a: 1 ≤ |Sy| ≤ ∆− 2.
We distinguish y from x by using a different set of colors on Sy than are used on

Sx, but still coloring the vertices in Sy distinctly. We can do this since there are
(∆−1
|Sy| ) ≥ 2 possible sets of colors for the children of y. This pins x and y. We extend

the labeling by coloring the descendants of vertices in Sy in the same fashion. By
Lemma 4.1 with i = 1, this is a ∆-distinguishing labeling.

Subcase 3b: |Sy| = ∆− 1.
In this subcase x and y have no common neighbors. We distinguish x from y by

using a different set of colors on Sy than are used on Sx, but coloring the rightmost
two vertices of Sy the same. Let these vertices be u1, u2. So we color the leftmost
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∆−3 vertices of Sy distinctly from the set {1, 2, 3, . . . , ∆−3} and color both u1, u2

with color ∆− 2. This pins x and y, and all vertices in the graph except u1 and u2

and their descendants in T .
Thus, we need only consider automorphisms σ which interchange u1 and u2. By

the stipulations of Case 3 (with v = y, x = u1 and y = u2) we know N(u1)− u2 6=
N(u2)−u1. However, G is regular of degree ∆, so there exists a vertex z 6= u1 that
is adjacent to u2 but not u1. If vertex z is already fixed by σ, then this fixes u2

and our coloring is a ∆-distinguishing labeling of G as desired. Otherwise, z is a
child of u2 in T .

If u2 has between 1 and ∆−2 children in T , we proceed as in Subcase 3a; if it has
exactly ∆− 1 children in T , we proceed to the next level of T . By induction on the
number of levels of T , this process must eventually halt, giving us a ∆-distinguishing
labeling of G.

Corollary 4.3. Our proof of Theorem 4.2 provides a polynomial-time algorithm to
find a ∆-distinguishing labeling of a connected graph G (provided G 6= K∆+1,K∆,∆

or C5).

Proof. Input a graph G with maximum degree ∆. Each of the steps described
below can be accomplished in polynomial time. First check that G 6= K∆,K∆,∆.
If ∆ = 1, 2, G is a path or a cycle, and we distinguish as in Section 1. Otherwise,
∆ ≥ 3. Find the degree of each vertex in G. If there a vertex of degree less
than ∆, use the coloring described in Case 1. Otherwise, G is regular of degree ∆
and we select a vertex v arbitrarily and construct a breadth-first search spanning
tree T with v as the root. For each pair x, y of children of v, check whether
N(x)− y = N(y)− x. If such a pair x, y is found, then use the coloring in Case 2.

Otherwise color as in Case 3, that is, color v with ∆ and retire ∆. Label the
leftmost ∆− 2 neighbors of v distinctly from the set {1, 2, 3, . . . , (∆− 2)}, and the
last two neighbors, say x, y, both with ∆ − 1. Proceed as in Case 1 to extend the
labeling to the rest of the graph, coloring the children in T of each vertex distinctly,
except for y and its descendants in T . Compute the set Sy, which will be non-empty.
If |Sy| ≤ ∆− 2, finish the coloring as in Subcase 3a. Otherwise, |Sy| = ∆− 1. We
finish the coloring of G by coloring the descendants of y as follows. Consider these
vertices in the order that they were selected in T , coloring siblings distinctly, unless
the parent is y or a rightmost descendant of y with ∆− 1 children in T . For y and
each rightmost descendant of y with ∆ − 1 children in T , color its children with
1, 2, 3, . . . , ∆ − 3,∆ − 2,∆ − 2. When all of T has been colored, then all vertices
are pinned except possibly for the rightmost two children (and their descendants
in T ) of the last, rightmost descendant of y with ∆− 1 children in T , say w, with
rightmost two children u1, u2. If N(u1) = N(u2), we re-label G, starting with
w as the root, and proceeding as in Case 2. Since the initial coloring is done in
polynomial time, doing it a second time is still polynomial time. If N(u1) 6= N(u2),
then u2 has at least one child in T , but u2 does not have ∆− 1 children in T , since
w was the last rightmost descendant of y to do so. Thus we recolor the children of
u2 as in Case 3a with x = u1 and y = u2. This yields a ∆-distinguishing labeling
of G in polynomial time.

In Theorem 4.2, the hypothesis that G is a connected graph is necessary. For
example, consider the graph G consisting of two copies of K3. Graph G is regular
of degree 2, but D(G) = 4, since we cannot label the two triangles with identical
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sets of labels. This example can be generalized; to get a graph which is regular of
degree 2 with distinguishing number s + 1, take (s

3) + 1 copies of K3. However, we
do have the following bound for disconnected graphs.

Corollary 4.4. Let δ(G) be the minimum degree of a vertex in graph G. If G is
a disconnected graph on n vertices, then D(G) ≤ n− δ(G).

Proof. If G is a disconnected graph on n vertices then G is connected and ∆(G) +
δ(G) = n − 1. Since the automorphism group of G is equal to the automorphism
group of G we know D(G) = D(G). Combining these with the result of Theorem 4.2
yields D(G) = D(G) ≤ ∆(G) + 1 = n− δ(G).

Theorem 4.5. For all connected graphs G, χD(G) ≤ 2∆(G). Furthermore, equal-
ity is achieved if and only if G = K∆,∆ or C6.

Proof. By Theorem 2.2, χD(G) = 2∆(G) for G = K∆,∆ and C6. Thus it remains to
show χD(G) ≤ 2∆(G)−1 for all other graphs. As noted before, the only connected
graph with ∆ = 1 is K2, and the connected graphs with ∆ = 2 are paths and
cycles, all of whose distinguishing chromatic numbers are in Table 1. For the rest
of the argument, we assume that ∆ ≥ 3.

Let G be a connected graph with ∆ ≥ 3 other than G = K∆,∆ or C6. In each
case below we will choose a vertex v ∈ V (G) and let T be a breadth-first search
spanning tree of G with v as the root. By the definition of a breadth-first search
spanning tree, the distance between v and any vertex w in T (its level) is the same
as the distance between v and w in G.

Case 1: G has a vertex v of degree less than ∆.
We color G as follows. Color v with color 2∆− 1, and then retire color 2∆− 1.

This pins v. We color the rest of G using colors from the set {1, 2, 3, . . . , 2∆− 2}.
Consider the vertices at distance i from v, and color the vertices from the left to
the right, in the order they were chosen to be in T , so that each vertex receives the
first color that does not appear among its (at most) ∆−2 siblings and its (at most)
∆−1 neighbors which have been already colored. Since ∆−2+∆−1 = 2∆−3, such
a greedy coloring is possible. It is a proper distinguishing labeling by Lemma 4.1.

Case 2: G is regular of degree ∆ and there is a triple of vertices v, w, y where
vw, vy ∈ E(G) and N(w)− y = N(y)− w.

First suppose N(x) − y = N(y) − x for all vertices x with xv ∈ E(G). If
wy ∈ E(G) then G = K∆+1 which has χD(G) = ∆ + 1 ≤ 2∆ as desired. If
wy 6∈ E(G) then G = K∆,∆, a contradiction.

Otherwise, there exists a vertex x 6= w, y such that vx ∈ E(G), but N(x)− y 6=
N(y)− x. Rearrange T as necessary to let w be chosen as the first child of v, and
x, y chosen as the last two children of v. We use the same greedy coloring algorithm
as in Case 1, but could run into difficulty at level 1, where there are ∆ children of
v, hence y, has ∆ − 1 siblings and ∆ − 1 neighbors already colored from the set
{1, 2, 3, . . . , 2∆− 2}. There is a color for y unless the set of siblings of y is distinct
from the set of neighbors of y, and all 2∆− 2 vertices are colored distinctly. In this
instance, all neighbors of y are vertices on level 2 of T and in particular, xy 6∈ E(G).
Thus N(x) = N(x)− y and N(y) = N(y)− x and thus N(x) 6= N(y).

Now we may color y the same color as x. Then any nontrivial automorphism of
G that preserves the colors must interchange x and y and fix all other children of v
in T . Since w comes first in T , each vertex in N(y) is either w itself or a child of w
in T , and thus the vertices in N(y) are fixed by any automorphism that preserves
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the colors. Since N(x) 6= N(y), there is no automorphism which both preserves the
colors and interchanges y and x. Thus we have a proper (2∆ − 1)-distinguishing
labeling of G as desired.

Case 3: G is regular of degree ∆ and N(x)− y 6= N(y)− x for every triple of
vertices v, x, y where vx, vy ∈ E(G).

Choose any vertex v, and let T be a breadth-first search spanning tree with v
as its root. Color the graph as in Case 2, from the bottom to the top, left to right,
where each vertex is colored distinctly from its neighbors and siblings, except that,
if necessary, we color the rightmost two children of v, say x and y, both the same
color. If x and y get different colors then this is a proper (2∆ − 1)-distinguishing
labeling of G and we are done. Otherwise, as before, y’s set of siblings is disjoint
from its set of neighbors. In particular, yx 6∈ E(G) and so N(x) = N(x) − y and
N(y) = N(y)− x.

Then v, its leftmost ∆ − 2 children and all their descendants in T are pinned,
and any non-trivial automorphism, σ, that preserves the colors must interchange
x and y. Let Sx be the set of children of x in T that are not neighbors of y and
let Sy be the set of children of y in T (which will not be neighbors of x because x
comes before y in the breadth-first search spanning tree T . Since σ interchanges x
and y it must also interchange Sx with Sy.

We first show that |Sy| > 0. Since N(y) 6= N(x), and G is regular of degree ∆,
there must be some vertex z which is adjacent to y but not x. Then z cannot be
any vertex already pinned because σ interchanges x and y. Thus, z must be a child
of x or y in T and since zx 6∈ E(G) we have z ∈ Sy. This means that |Sy| > 0.

Subcase 3a: 1 ≤ |Sy| ≤ ∆− 2.
Let u be the rightmost child of y in T . Note that u is not adjacent to any vertex

on level 1 except for y, because T is a breadth-first search spanning tree. In the
initial coloring, u is colored distinctly from all of its up to ∆− 1 colored neighbors
and at most ∆− 2 siblings. Thus, the color of u is not forced–there is at least one
alternate choice of color for u. Changing the color of u will not affect the coloring of
any level 1 vertex except for y, and will not change the color of any vertex on a level
greater than 1, because u is the last vertex to be colored before the level 1 vertices.
If it is possible to change the color of u to the same color as the vertex x (say red),
we do so; then there is another color that we can color y which is different from all
of its siblings and all of its neighbors and we have a proper (2∆− 1)-distinguishing
labeling of G as desired.

If this is not possible, then u must have a neighbor (besides y) that is red. This
means that there is an alternate color for u which is different from red. Change
u’s color to this alternate color and leave y colored red. Since the vertices of Sy

are colored distinctly as are the vertices in Sx, σ only preserves the colors if the
set of colors in Sy is the same as the set of colors in Sx. If this is true in the
initial coloring, it will not be true when we change the color of u. Thus, the set of
colors on the neighbors of y will be different from the set of colors on the neighbors
of x, so each of them will be pinned by the coloring, and this will be a proper
(2∆− 1)-distinguishing labeling.

Subcase 3b: |Sy| = ∆− 1.
In this subcase, N(y) = {v} ∪ Sy, so x and y have no common neighbors other

than v. If the set of colors in Sx is different from the set of colors in Sy, color y the
same color as x. Any σ which preserves the colors must fix x and y, hence fixing
the whole graph. Otherwise we assume that the (∆− 1) colors in Sx are identical
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to the (∆− 1) colors in Sy, and that these colors, together with the (∆− 1) colors
on the children of v partition the set of colors {1, 2, 3, . . . , 2∆ − 2}. Let u1, u2 be
the two rightmost children of y in T . We colored u2 last of the vertices on level
2. If u1u2 ∈ E(G) then the set of siblings of u2 intersects its neighbor set so it is
possible to change the color of u2.

If not, then u1u2 6∈ E(G) we change the color of u2 to be the same as the
color of u1. Then, any non-trivial σ which preserves the colors must fix x and y,
because now their neighbor sets of colors are different, and interchange u1 and u2.
Such a σ must also fix all vertices in G except for descendants of u1 and u2. By
the stipulations of Case 3 (with v = y, x = u1 and y = u2) and the fact that
u1u2 6∈ E(G), we know N(u1) 6= N(u2). However, G is regular of degree ∆, so
there exists a vertex z that is adjacent to u2 but not u1. If vertex z is already fixed
by σ, then this fixes u2 and our coloring is a 2∆− 1 distinguishing labeling of G as
desired. Otherwise, z is a child of u2 in T .

If u2 has between 1 and ∆− 2 children in T , we proceed as in Subcase 3a; if it
has exactly ∆ − 1 children in T , we proceed to the next level of T . By induction
on the number of levels of T , this process must eventually halt, giving us a 2∆− 1
distinguishing labeling of G.

This proof also results in a polynomial time algorithm for (2∆−1)-proper distin-
guishing of a graph. The proof is similar to that of Corollary 4.3, hence is omitted.

Corollary 4.6. Let connected G 6= Kn,n, with ∆(G) ≥ 3. The proof of Theo-
rem 4.5 gives a polynomial time algorithm to find a proper distinguishing (2∆−1)-
labeling of G.

The hypothesis of connected is once again necessary. A graph G consisting of
multiple copies of K3,3 has ∆(G) = 3. Each copy requires six colors by Theorem 2.3,
three for each partite set. Distinct sets of three colors must be used for each partite
set in each copy. To get a graph which is regular of degree 3 with distinguishing
chromatic number s + 1, take 1

2 (s
3) + 1 copies of K3,3. For instance, if s = 6, then(

6
3

)
= 20, so six colors suffice for the graph connsisting of 10 copies of K3,3, but the

graph consisting of 11 copies of K3,3 has χD = 7.
We do not know of a graph for which χD = 2∆− 1, but we have a construction

which shows there are infinitely many graphs for which χD = 2∆−2. Let H be the
graph which is Kn,n plus two new vertices u, v, with u adjacent to one independent
set of Kn,n and v adjacent to the other. Note that the vertices in the Kn,n in H
must all be colored distinctly in a proper distinguishing labeling of H. For any
graph G of maximum degree n + 1, replace every edge of G by a copy of H, that
is, for every edge {x, y}, add a copy of H, say Hxy and let x be adjacent to uxy

and y be adjacent to vxy, and remove the edge between x and y. Then the new
graph has maximum degree n + 1, and every copy of H requires at least 2n colors
to distinguish.

Corollary 4.7. Let G 6= K∆,∆ be a connected graph with root w and ∆(G) ≥ 3.
Then χD(G, w) ≤ 2∆(G)− 2.

Proof. Choose the root w as the initial vertex in the proof of Theorem 4.5, then
proceed with the rest of the proof. Since w has at most ∆ neighbors, and there are
2∆−2 colors available, we can choose a color for w to make a proper coloring, which
must also be distinguishing since every automorphism of (G, w) must fix w.
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Conn. graphs w/max. Upper bounds for others
χ K∆+1, C2k+1 ∆− 1
D K∆+1,K∆,∆, C5 ∆− 1
χD K∆,∆, C6 2∆− 1 or 2∆− 2

Trees w/max. Upper bounds for others
χ 2
D T∆,h ∆− 1
χD T∆,h ∆

Figure 4. Graphs with maximum values in terms of ∆, and upper
bounds for all other graphs

Although choosing a root for G reduces the distinguishing number for graphs
with maximum degree at least 3, the situation for ∆ = 2 is different. Note that
χD(C2k+1, w) = χD(C2k+1) = 3 is not reduced by choosing a root, since 3 colors
are needed for a proper coloring of an odd cycle. Also, χD(C2k, w) = 3, because
any two coloring of an even cycle that fixes one vertex (the root) has a reflection
about the fixed vertex and its opposite vertex on the even cycle. The distinguishing
chromatic number of a cycle is only reduced by choosing a root in the case of C4

and C6.
A summary of the Brooks’ Theorem results appears in Figure 4.

5. Conjectures

As described in Section 4, Kn,n and C6 satisfy χD(G) = 2∆, and there are
graphs where χD(G) = 2∆− 2. Every other connected graph has χD(G) ≤ 2∆− 1,
but there are no known cases of equality. In our proof, we used the color 2∆ − 1
exactly once. It may be that all graphs which are not Kn,n or C6 have a proper
(2∆− 2)-distinguishing labeling which uses every color at least twice.

Conjecture 5.1. There is no connected graph G such that χD(G) = 2∆− 1.

The examples of graphs where χD(G) = 2∆ − 2 depend heavily on complete
bipartite subgraphs for their high chromatic distinguishing number. Thus, we con-
jecture:

Conjecture 5.2. Let the girth of connected graph G be 5 or greater. Then
χD(G) ≤ ∆ + 1.
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