
CIRCULANTS AND SEQUENCES

KAREN L. COLLINS

Abstract. A graph G is stable if its normalized chromatic dif-
ference sequence is equal to the normalized chromatic di�erence
sequence of G � G, the Cartesian product of G with itself. Let
� be the independence number of G and ! be its clique number.
Suppose that G has n vertices. We show that the �rst ! terms of
the normalized chromatic di�erence sequence of a stable graph G
must be �=n; and further that if G has odd girth 2k+ 1, then the
�rst three terms of its normalized chromatic di�erence sequence
are �=n; �=n; �=n, where � � �=k. We derive from this sequence
an upper bound on the independence ratio of G, which agrees with
the lower bound of H�aggkvist for k = 2 and of Albertson, Chan
and Haas for k � 3.

Zhou has shown that circulants and �nite abelian Cayley graphs
are stable. Let G be a circulant with symbol set S and n vertices.
We say S = fa1; a2; : : : ; asg is reversible if a1 + as = a2 + as�1 =
� � � = ab s

2
c + ad s

2
c. We show that the independence ratio �(G) �

�(S), and that if S is reversible, then limn!1 �(G) = �(S). We
conjecture that �(G) = �(S) for a reversible circulant with suÆ-
ciently many vertices.

1. Introduction

Let G be a graph. The chromatic di�erence sequence of G, cds(G),
is the sequence of positive integers of length equal to the chromatic
number of G, with the ith term equal to the maximum number of
vertices that can be additionally colored by using i instead of i � 1
colors, see Albertson and Berman, [1, 2]. The �rst appearance of this
idea is Greene's and Kleitman's proof that comparability graphs have
monotonically decreasing sequences, see [10, 11]; proofs from other per-
spectives and related works appear in [8, 9, 21, 23, 24]. In another
direction, Stanley has developed a symmetric function generalization
of the chromatic polynomial which contains the chromatic di�erence
sequence, see [26, 27].
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Let G have n vertices. The normalized chromatic di�erence sequence
of G, ncds(G), is cds(G) with each term divided by n. This idea allows
the chromatic sequences of graphs with di�erent number of vertices to
be fairly compared. For instance, the No-Homomorphism Lemma in
[4] proves that if G 7! H homomorphically and H is vertex transitive,
then ncds(G) dominates ncds(H). Hell and Nesetril therefore think
about the graph homomorphism of G to H as coloring G with H [14],
see also [15, 16, 17, 19, 20]. Another generalization of the ncds is Zhou's
work in [30].
The �rst term of ncds(G) is called the independence ratio, �(G). See

also [5, 13, 18, 31] for other connections with graph homomorphism.
H�aggkvist uses the No-Homomorphism lemma to prove that a graph
G with odd girth at least 5 and minimum degree at least (3=8)n maps
homomorphically to the 5-cycle, hence �(G) � 2=5, [12]. Albertson,
Chan and Haas generalize this theorem to get that if G is a graph
with odd girth 2k + 1 and minimum degree at least (k=(2k + 1))n,
then �(G) � k=(2k + 1), [3]. We show that if ncds(G) = ncds(G �
G), then equality holds for each of these theorems. We also make a
generalization to graphs with larger clique size.
A circulant G with n vertices is a vertex transitive graph with ro-

tational symmetry such that two vertices are adjacent if their di�er-
ence appears in a �xed set S. De�ne the size of S, jSj, to be the
sum of the �rst and last elements of S, and �(S) to be the indepen-
dence ratio of any consecutive set of jSj vertices in G. We show that
�(S) � �(G). Let a set T be reversible if T = jT j � T . Then we
show limn!1 �(G) � �(T ) whenever S � T . We also conjecture that
the independence number of G with edges given by reversible T equals
bn � �(T )c when n is suÆciently large. In light of Zhou's recent work
[28, 29], it seems likely that these results may generalize to Cayley
graphs of �nite abelian groups. See also Larose, Laviolette, and Tardif
[22].
Section 2 makes some useful de�nitions. In Section 3 we prove an

upper bound that we use throughout the paper, and describe some
examples. Section 4 proves the independence ratio results that coincide
with those H�aggkvist, and Albertson, Chan and Haas. Section 5 proves
the further results on the independence ratio of circulants. We make
some conjectures in Section 6.

2. Definitions

All graphs will be simple and undirected. A circulant is a graph G
with n vertices labeled 0; 1; 2; : : : ; n � 1 and edges determined by set
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S � f1; 2; : : : ; bn
2
cg by i is adjacent to j if ji� jj 2 S or n�ji� jj 2 S.

Circulant graphs are necessarily vertex transitive.
Let G and H be two graphs. De�ne the Cartesian product G �H

to be the graph with vertex set V (G) � V (H) and edge set given by
(g1; h1) is adjacent to (g2; h2) if g1 = g2 and h1 is adjacent to h2 in H or
g1 is adjacent to g2 in G and h1 = h2. Let G

k be the Cartesian product
of G with itself k times.
De�ne the chromatic number of graph G, called �(G), to be the

smallest integer n such that the vertices in G can be colored with n
colors so that if two vertices are adjacent, then they receive di�erent
colors. Let �(G) = m. De�ne the chromatic sequence of G to be
�1;�2; : : : ;�m where �i is equal to the number of vertices in the
largest i-colorable vertex induced subgraph of G.
We de�ne the chromatic di�erence sequence of graph G, cds(G), to

be �1; �2; : : : ; �m where �1 = �1 and �i = �i ��i�1 for 2 � i � m.
Note that �1 is the independence number of G. We will abbreviate
�1(G) as �(G). De�ne the independence ratio of G to be �(G) =
�(G)=n where n is the number of vertices of G.
Let the number of vertices of G be n. De�ne the normalized chro-

matic di�erence sequence of G, ncds(G), to be �1=n; �2=n; : : : ; �m=n.
Then G is said to be stable if ncds(G) = ncds(G2). De�ne the ultimate
chromatic di�erence sequence to be NCDS(G) = limk!1 ncds(Gk)
[13, 30].
Note that the chromatic number of Gk is greater than or equal to the

chromatic number of G, since Gk contains G as an induced subgraph.
Conversely, �(G) � �(Gk) by an easy argument. We let f : V (G) !
f1; 2; : : : ; �(G)g be a coloring of G and

f(v1; v2; : : : ; vk) =
nX
i=1

f(vi) (modulo n)

If two vertices in Gk are adjacent, then they di�er in only one position
of their k-tuples, and hence must receive di�erent colors modulo n.

3. An upper bound

A graph G is said to be stable if the normalized chromatic di�erence
sequence of G is equal to the normalized chromatic di�erence sequence
of G�G, the Cartesian product of G with itself. Zhou has shown that
circulants and Cayley graphs of �nite abelian groups are stable, see
[28, 29]. Siran has demonstrated the existence of Cayley graphs which
are not stable [25]. See also Conjecture 1.
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The generalized Petersen graph P (7; 3) in Figure 1(c) is a graph
which is stable but neither a circulant nor the Cayley graph of a �nite
abelian group. We obtain an upper bound on �(G � H) by using a
clique cover of H and cds(G). This proves that a graph G cannot be
stable unless the �rst !(G) terms of the ncds(G) are equal.
Let A = a1 � a2 � � � � � as be a partition of n. De�ne its conjugate

partition, A�, by a�i equals the number of elements of A which are at
least i, for 1 � i � a1.

Theorem 3.1. Let H be a graph, and let C = c1; c2; : : : ; cs be the
sizes of a disjoint clique cover of H, where c1 � c2 � � � � � cs. Let C�

be the conjugate partition of C. For any graph G,

�1(G�H) �

�(G)X
i=1

c�i (H)�i(G)

Proof. Let I be a maximum independent set in G � H and let Ih be
the subset of I whose �rst entries are equal to h for each vertex h of
H. Then Ih is isomorphic to an independent set in G. Clearly if h1 is
adjacent to h2 in H, Ih1 \ Ih2 = ;. Hence if h1; h2; : : : ; ht form a clique
in H, then Ih1; Ih2 ; : : : ; Iht

are t pairwise disjoint independent sets of
G, hence jIh1 [ Ih2 [ : : : [ Iht

j � �t = �1(G) + �2(G) + � � � + �t(G),
where �j = 0 if j > �(G).

Thus jIj �
Ps

i=1

Pci(H)
j=1 �j(G). Each �j(G) appears in the sum the

same number of times as the number of cliques which have size at least
j. This number is c�j (H).

Corollary 3.2. Let H be a graph with jHj vertices that contains at
least one edge. Let G be a graph such that �1(G) > �i(G) for some
2 � i � !(H). Then �(G�H) < jHj�(G).

Proof. Let C1; C2; : : : ; Ct be any disjoint clique covering of H that
contains a clique of size !(H). Since H contains an edge, c�2 > 0.

Note that
Ps

i=1 ci = jHj =
Pc1

j=1 c
�
j . Therefore

Pl

i=1 c
�
i (H)�i(G) <

jHj�1(G).

Corollary 3.3. Let G be a stable graph. Then

�1(G) = �2(G) = � � � = �!(G)(G)
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Figure 1 The Petersen graph in (a) is not stable hence not a
circulant. The tree T in (b) is not stable, but T 2 is stable. The
generalized Petersen graph P (7; 3) in (c) is stable but not a cir-
culant, nor a �nite abelian Cayley graph.

The Petersen graph (Figure 1(a)) is not a circulant, since cds(P ) =
4; 3; 3. The NCDS(P k) = 1=3; 1=3; 1=3, see [4]. The tree T in Fig-
ure 1(b) has cds(T ) = 4; 2 and ncds(T 2) = 1=2; 1=2. It is easy to
check that P (7; 3) in Figure 1(c) is not a circulant or the Cayley graph
of a �nite abelian group, and that cds(G) = 5; 5; 4. Label the out-
side vertices counterclockwise from the top as 1; 2; 3; 4; 5; 6; 7 and la-
bel the vertex on the inside 7-cycle which is adjacent to i as i0. Let
T1 = f1; 3; 5g, T2 = f2; 4g, U1 = f2; 4g and U2 = f5; 6; 7g. All arith-
metic is modulo 7. Then a maximum independent set in G2 with 70
vertices is f(i; j)jj 2 (T1+ i�1)g[f(i; j 0)jj 2 (T2+ i�1)g[f(i0; j)jj 2
(U1+i�1)g[f(i0; j0)jj 2 (U2+i�1)g. A second maximum independent
set is given by f(i; j)jj 2 (T1 + i)g [ f(i; j 0)jj 2 (T2 + i)g [ f(i0; j)jj 2
(U1 + i)g [ f(i0; j0)jj 2 (U2 + i)g. The graph G2 is 3-colorable since G
is, hence ncds(G2) = 5=14; 5=14; 2=7 = ncds(G) and G is stable.
The following is a direct proof that circulants satisfy Corollary 3.3.

Theorem 3.4. Let G be a circulant. Then �1(G) = �2(G) = � � � =
�!(G)(G).

Proof. (Direct) Let the vertices of G be numbered from 0 to n�1. Let
I be a maximum independent set of G, and letW be a maximumclique
of G. All addition is modulo n. Then fI+wjw 2 Wg is a collection of
! disjoint maximum independent sets of G. Similarly, fW + iji 2 Ig is
a collection of � disjoint maximum cliques.
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4. Independence ratio of stable graphs

The cds of a stable graph G has its �rst ! terms equal to �. We
prove that if G contains a partitionable graph H with independence
number � and with the same clique size as G, then the next term in
cds(G) is at least �=�. Since odd cycles are partitionable, we apply this
result to graphs with large odd girth. This gives an upper bound on the
independence ratio which is the same number as the lower bounds by
H�aggkvist and Albertson et al. when the minimum degree is bounded
from below.
De�ne a graph G to be partitionable (or an (�; !)-graph) if (i) n =

�! + 1, (ii) every vertex v is in exactly � independent sets of size
� and ! cliques of size !, (iii) the n independent sets of size �, say
S1; S2; : : : ; Sn and the n cliques of size !, say C1; C2; : : : ; Cn can be
ordered so that Si \ Ci = ; and Si \ Cj 6= ; whenever i 6= j. Odd
cycles and their complements are partitionable. Partitionable graphs
are therefore related to the Strong Perfect Graph Conjecture. See [6].

Theorem 4.1. Let G be a graph, and H be a partitionable graph such
that !(G) = !(H) = !. Then �(G �H) � �(H)

P!+1
i=1 �i(G).

Proof. Let �(H) = �, �(G) = �. Then consider an independent set
I in G �H, where each vertex of H is replaced by a copy of G, and
whenever two vertices in H are adjacent, then there is a matching
between corresponding copies of G which joins isomorphic vertices of
G. For every vertex v of H, let I(v) be the intersection of I and the
copy of G at v.
Thus if v1 is adjacent to v2 in H, then I(v1) \ I(v2) = ;, where

I(v1); I(v2) are considered as subsets of the vertices ofG. If v1; v2; : : : ; vt
is a clique in H, then I(v1); I(v2); : : : ; I(vt) is a collection of dis-
joint independent sets of G, that is, a partial coloring of G. Thus
j [t

j=1 I(vj)j �
Pt

j=1 �j(G).

Label the vertices of H with 0 to � �! so that in (H�0) the � disjoint
!-cliques are C1; C2; : : : ; C� where m 2 Ci exactly when (i�1)!+1 �
m � i �!. Let J(0) = I(0) and J(k) =

S
(I(0)\I(j1)\I(j2)\ : : : I(jk))

where (i � 1)! + 1 � ji � i � ! for 1 � i � k. Each term in the
union is non-empty if and only if the vertices 0; j1; j2; : : : ; jk form an
independent set in H. Notice that J(k) � J(k � 1).
Then we partition the vertices of I into � disjoint (! + 1)-colorable

subgraphs of G. Let Gi = (J(i� 1) � J(i)) [ (
S!

r=1 I((i� 1) � ! + r).
Notice that J(i) =

S!

r=1 (I((i� 1)! + r) \ J(i� 1)); hence when J(i)
is subtracted from J(i � 1), we have removed J(i � 1) \

S!

r=1 I((i �
1)! + r) from J(i� 1). Also, (i� 1)! +1; (i� 1)! + 2; : : : ; i � ! forms
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a clique in H, hence Gi is the union of ! + 1 disjoint independent sets
of G. Thus jGij �

P!+1
s=1 �s(G).

Now the question remains whether we have included every vertex of
I(0) in our partition. At each step i we include J(i� 1)�J(i), so that
what we have remaining to include is J(i). Thus after partitioning �
times, one for each of the ! cliques of H, we have remaining J(�) =S
(I(0) \ I(j1) \ I(j2) \ : : : I(j�)). But J(�) must be empty, since

0; j1; j2; : : : ; j� is a set of size � + 1 and hence cannot be independent

in H. Hence jIj �
P�

i=1 jGij � �(
P!+1

i=1 �i(G)).

For example, if H is the 5-cycle, then �(G�H) � 2(�1(G)+�2(G)+
�3(G).
The argument above can be applied separately to disjoint subgraphs

of H to bound �(G �H) further.

Theorem 4.2. Let G be a stable graph, and let H be an induced
subgraph of G which is partitionable, and !(G) = !(H). Let �(H) =
�, �(G) = �. Then

�!(G)+1(G) � �=�

�=(�! + 1) � �(G)

Proof. Suppose that I is a maximum independent set in G2. Since
G is stable, �(G2) = jGj�(G), hence if we consider G2 as replacing
each vertex of G with a copy of G, we must have that a maximum
independent set in G2 intersects each of the jGj copies of G in �(G)
vertices. Let I(H) be I restricted to H �G. Thus jI(H)j = jHj�(G).
Now by Corollary 3.3 � = �1(G) = �2(G) = � � � = �!(G). By the
previous lemma, then jI(H)j = (�! + 1)� � �(!� + �!+1), so �=� �
�!+1(G).
Let n be the number of vertices of G. Then n �

P!+1
i=1 �i(G) �

�(! + 1=�), so we get � � �=(�! + 1).

De�ne �(G) to be the size of the smallest chordless odd cycle of G.
Let �(G) = 0 if G has no chordless odd cycle, i.e. G is bipartite.

Corollary 4.3. Let G be a stable graph with n vertices, and �(G) �
2l + 1. Then �(G)=l � �3(G) and �(G) � l=(2l + 1).

Proof. The �rst half of the proof follows from Theorem 4.2 and the fact
that a 2l+1 cycle is partitionable and has independence number l.

This lower bound on �(G) can be combined with the following re-
sults. Let Æ(G) be equal to the minimum vertex degree of G.
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Theorem 4.4 (H�aggkvist [12]). Let G be a graph with n vertices,
�(G) � 5 and Æ > (3n)=8. Then �(G) � 2=5.

Theorem 4.5 (Albertson, Chan and Haas [3]). Let l > 2. Let G be
a graph with n vertices, �(G) � 2l + 1 and Æ > n=(l + 1). Then
�(G) � l=(2l + 1).

Corollary 4.6. Let G be a stable graph, �(G) � 5 and Æ(G) > 3n=8.
Then �(G) = 2=5.

Corollary 4.7. Let l > 2 and let G be a stable graph, �(G) � 2l + 1
and Æ(G) > n=(l + 1). Then �(G) = l=(2l + 1).

In particular, any circulant G with n vertices and Æ(G) > n=(l + 1)
satis�es �(G)=n = l=(2l + 1). Since gcd(l; 2l + 1) = 1, 2l + 1 must
divide n. Thus if 2l+1 does not divide n, G must have �(G) � 2l� 1.
If G is a circulant with Æ(G) > 3n=8 and 5 does not divide n, then G
has a triangle.
Theorem 4.1 still holds if the graph H is replaced by the kth power

of a cycle where the clique size does not divide the number of vertices.
These circulants appear in Seymour's conjecture, see [7]. Let W (m; l)
be the circulant with m vertices and S = f1; 2; 3; : : : ; lg such that
m = j(l + 1) + r and r 6= 0. Then W (m; l) has ! = l + 1, � = j and
� = l + 2. When r = 1, W (m; l) is partitionable.

Theorem 4.8. Let G be a graph. Let m = j(l + 1) + r, where

r 6= 0. Then �(W (m; l)) = j and �(G �W (m; l)) � j
Pl+2

i=1 �i(G) +Pr�1
i=1 �i(G).

Proof. The proof is an easy generalization of the proof of Theorem 4.1.

Corollary 4.9. Let G be a stable graph that contains W (m; l) such
that l + 1 does not divide m. Then �l+2(G) � �(G)=�(W (m; l)) and
�(G) � �(W (m; l))=((l+ 1)j + 1).

5. Independence ratio of circulants

We prove that the independence ratio of circulant G with edge set
given by S is less than or equal to the independence ratio of a graph
U(S) that depends only on S. This upper bound is therefore inde-
pendent of the number of vertices in G. We then show that the limit
of the independence ratio of a reversible circulant as the number of
vertices goes to in�nity equals the independence ratio of U(S). We
show two methods to embed a circulant which is not reversible into a
circulant which is reversible, thus getting lower bounds for the limit of
the independence ratio of any circulant.
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Let l � 2. Let S = fa1; a2; : : : ; alg be the edge set of circulant
G. Let jSj = a1 + al. Let U(S) be the graph with vertices labeled
0; 1; 2; : : : ; (jSj � 1) such that i is adjacent to j if ji � jj 2 S. Then
U(S) is not a circulant because we are not including as edges the ver-
tices i and j where ji � jj 2 jSj � S. We abbreviate �(U(S)) and
!(U(S)) as �(S) and !(S) respectively. Let �(S) = �(S)=jSj. Then
we get the following upper bound on the independence ratio. See also
Conjecture 2.

Theorem 5.1. Let G be a circulant with n vertices and edge set given
by S. Then �(S) � �(G).

Proof. Let n = qjSj+r with 0 � r � jSj�1. Let I be a �xed maximum
independent set of G and let Hj;k = fj; j + 1; j + 2; : : : ; j + k � 1g
with arithmetic modulo n. Let i be the minimum of jH(j; r) \ Ij over
0 � j � n� 1. If i=r � �(S), we show �(G) � �(S). Observe that any
consecutive jSj vertices of the circulant intersect with I in at most �(S)
vertices. Therefore we can break up the circulant into q groups of jSj
and one group of r vertices, choosing the r vertices so that we achieve
i as the minimum intersection with I. Then �(G) � q�(S) + i �

q�(S) + r�(S)=jSj = �(S)
jSj

(qjSj+ r) = n�(S)
jSj

. Hence �(G) � �(S).

Suppose that i=r > �(S)=jSj. De�ne jSj = r0 and r = r1. Let rl+2 =
rl+1(b

rl
rl+1

c+1)� rl for nonnegative integer l. Let il+2 be the minimum

of jH(j; rl+2\Ij. Then we prove that �(S) < i=r < i2=r2 < � � � < iL=rL
where rL is the greatest common divisor of n and jSj. This gives the
following contradiction: iLjSj=rL > �(S) � jH(j; jSj)\Ij � iL(jSj=rL).
Now gcd(n; jSj) = gcd(jSj; r) by the Euclidean algorithm. Since rl+2

is an integer linear combination of rl+1 and rl, we have gcd(rl; rl+1) =
gcd(rl+1; rl+2) for all nonnegative integers l. Let rl = q � rl+1 + m
with 0 � m � rl+1 � 1. Then rl+2 = rl+1(q + 1) � rl = rl+1 � m.
Clearly rl+2 = rl+1�m < rl+1 unless m = 0, in which case rl+1 divides
rl and rl+1 = gcd(n; jSj). Therefore the sequence r0; r1; r2; : : : is a
strictly decreasing sequence of positive integers with the same greatest
common divisor, which must end in rL = gcd(n; jSj).
Assume by induction that il=rl < il+1=rl+1. Let rl = q � rl+1 + m.

Fix j. Let k1 = jH(j + q � rl+1;m) \ Ij and k2 = jH(j + rl; rl+2) \ Ij.
Then il � jH(j; rl) \ Ij � q � il+1 + k1. Also, k1 + k2 � il+1. Hence
il � q � il+1 � il+1 + k2. Since il=rl < il+1=rl+1 we get il+1rl � il+1q �
rl+1 > il+1rl+1 � k2rl+1. Simplifying, k2rl+1 > il+1(rl+1 � m). But
rl+2 = rl+1 �m. Therefore, k2=rl+2 > il+1=rl+1. This inequality must
hold for any value of j, hence it holds when k2 is the minimum value,
so il+2=rl+2 > il+1=rl+1.
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Theorem 5.2. Let G be a circulant with n vertices and edge set given
by S. Then 1=!(S) � �(G).

Proof. For any circulant G, n � �(G)!(G) by Theorem 3.4, hence
1=!(G) � �(G). Let S = fa1; a2; : : : ; alg. Then n � 2al by our
de�nition of S. Thus U(S) has a1+ al vertices and G has at least that
many. We argue that !(G) � !(S), hence 1=!(S) � 1=!(G) � �(G).
Let the vertices of G be labeled 0; 1; 2; : : : ; n�1. Then a copy of U(S)
is embedded in the subgraph of G induced by 0; 1; 2; : : : ; (a1+ al� 1).
Thus !(G) � !(S).

For any integer k, let k�S = fk�a1; k�a2; : : : ; k�alg. De�ne a set
S to be reversible if jSj�S = S. Note that this means S is reversible if
and only if ai+ al+1�i = jSj for all 1 � i � l. We show that a circulant
G with n vertices and reversible set S maps homomorphically to the
circulant H with n� jSj vertices and the same set S.

Lemma 5.3. Let H be a reversible circulant with n vertices and with
edge set given by S. Let n > jSj. Let G be the circulant with n+ jSj
vertices and edge set given by S. Then G maps homomorphically to
H.

Proof. Let the vertices of H be f0; 1; 2; : : : ; n� 1g and the vertices of
G be f0; 1; 2; : : : ; n+ jSj � 1g. We de�ne a homomorphism f : G! H
by f(i) = i if 0 � i � n � 1 and f(i + n) = i if 0 � i � jSj � 1.
Then we show that if v and u in G are adjacent, then f(v) and f(u)
are adjacent in H.

Case 1 Suppose that 0 � v; u � n � 1. Then if v; u are adjacent in
G, jv � uj is in S or n + jSj � S. Every member of n + jSj � S is at
least n, hence jv � uj is in S and since f(v) = v; f(u) = u, we have
f(v); f(u) are adjacent in H.

Case 2 Suppose that 0 � v; u � jSj � 1. Then if v + n; u + n
are adjacent in G, j(v + n) � (u + n)j is in S or n + jSj � S. But
jv � uj � jSj � 1, so is in S and these are adjacent in H.

Case 3 Suppose 0 � v � n � 1 and n � u + n � n + jSj � 1, and
v; u+ n are adjacent in G. Then ju+ n � vj is in S or n + jSj � S. If
u+ n� v = aj for some j, then v� u = n� aj, so v� u is in n� S. If
u+ n� v = n+ jSj � aj for some j, then u� v = jSj � aj, and since S
is reversible, u� v = al+1�j, and is in S.

For any two graphs G and H for which G maps homomorphically to
H, an i-colorable subgraph of H pulls back to an i-colorable subgraph
of G. The No-Homomorphism lemma [4] is a special case of this fact.
In the lemma below we show that in a reversible circulant, we can �nd
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a large independent set which is based on a �xed small circulant with
the same set of edges, by folding the large circulant onto the small one.

Lemma 5.4. Let H be a reversible circulant with n vertices and with
edge set given by S. Let al be the largest element of S and let n >
jSj+ al. Let G(k) be the circulant with n + (k � 1) � jSj vertices and
edge set given by S. Then �(G(k)) � �(H) + (k � 1)�(S). Further,
limk!1 �(G(k)) � �(S).

Proof. Note that G(1) = H. By Lemma 5.3 G(k + 1) maps homomor-
phically to G(k) for each positive integer k, and hence we have a homo-
morphism from G(k+1) to H for every k. This map is fk : G(k)! H
by fk(i) = i for 0 � i � n � 1 and fk(i + jn) = i for 0 � i � jSj � 1
and 1 � j � k � 2. Any independent set in H can be pulled back
to form an independent set in G(k), since the pre-image of a ver-
tex in H is an independent set of vertices in G(k). In particular we
choose an independent set with as many vertices as possible chosen
from 0; 1; 2; : : : ; jSj � 1 in H. Since n > jSj + al, n � al > jSj and
there are no edges whose di�erence is in n� S in the range of vertices
0; 1; 2; : : : ; jSj � 1. Then �(G(k)) � �(H) + (k � 1) � �(S) � k�(S).
Hence the limk!1 �(G(k)) � limk!1 k�(S)=(n+ (k� 1) � jSj) � �(S).
Thus we get

lim
k!1

�(G(k)) � lim
k!1

k�(S)

(n+ (k� 1) � jSj)
= �(S) lim

k!1

k

(n=jSj+ k � 1)
= �(S)

Let S = fa1; a2; : : : ; alg be a set which is not reversible. Then S can
be embedded in a larger set which is reversible. This will add edges to
the circulant which has S as its edge set, which may make the largest
independent set smaller. Let al�1 + al = D and a1 + al = E. Let
Ŝ = S [ (D � S) and ~S = S [ (E � S). Then it is easy to check that

Ŝ; ~S are reversible and contain S. If S is reversible, de�ne Ŝ; ~S = S.
Note that �(Ŝ) � �(S), since we have added only larger terms to S.

Corollary 5.5. Let G be a circulant with n vertices and edge set
given by S = fa1; a2; : : : ; alg. De�ne L(S) = limn!1 �(G). Then

�(S); 1=!(G) � L(S) � �(Ŝ); �( ~S). If G is reversible, then L(S) =
�(S).

We apply these bounds to two special cases: a circulant with every
element of S odd, and a circulant with S containing just 2 elements.

Corollary 5.6. Let G be a circulant with n vertices and edge set given
by S which contains only odd numbers. Then L(S) = 1=2.
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Proof. Since G is a circulant, and !(G) � 2, �1(G) = �2(G), hence
n � 2�1(G) and �(G) � 1=2. If n is even, then G is bipartite, hence
ncds(G) = 1=2; 1=2. If n is odd, then G is not bipartite, but either S

or Ŝ contains only odd numbers. Therefore �(Ŝ) = jŜj=2 by taking all

vertices whose labels are even and less that jŜj. Thus �(Ŝ) = 1=2 and
Corollary 5.5 �nishes the proof.

Corollary 5.7. Let G be a circulant with n vertices and edge set given
by S = fa; bg. Let n > 2(a + b). Let q; r satisfy b = qa + r with
0 � r � a� 1. Then

L(S) =

(
b+r

2(a+b)
q even

b+(a�r)
2(a+b)

q odd

Proof. We apply Corollary 5.5. Suppose that q is even. Then fi +
2jaj0 � i � a�1; 0 � j � (q�2)=2g[fqa; qa+1; qa+2; : : : ; qa+r�1g is
an independent set in U(S) and we can take �(S) � aq=2+r = (b+r)=2.
If q is odd, then fi + 2jaj0 � i � a � 1; 0 � j � (q � 1)=2g is an
independent set in U(S) and �(S) � a(q + 1)=2 = (b + (a � r))=2.
Dividing by jSj = a+ b gives the result.
For example, L(f1; 2kg) = k=(2k + 1).

S Best lower bound Best upper bound

1; 2; 4 1=!(S) = 1=3 �(Ŝ) = 1=3

1; 2; 5 1=!(S) = 1=3 �( ~S) = 1=3

1; 2; 6 �(S) = 2=7 �( ~S) = 2=7

1; 2; 7 1=!(S) = 1=3 �(Ŝ) = 1=3

1; 3; 4 1=!(S) = 1=3 �(Ŝ) = 2=7

1; 3; 6 1=!(S) = 1=3 �(Ŝ) = 1=3

1; 4; 5 1=!(S) = 1=3 �(Ŝ) = 1=3

1; 4; 6 �(S) = 3=7 �(Ŝ) = 2=5

1; 4; 7 �(S) = 3=8 �(Ŝ) = 3=8

1; 5; 6 1=!(S) = 1=3 �( ~S) = 2=7

1; 6; 7 1=!(S) = 1=3 �(Ŝ) = 4=13

Figure 2 provides best upper and lower bounds for L(S) for some
small values of S. See Conjecture 3.

6. Conjectures

A circulant (or Cayley graph) G not only is stable, but all of its
Cartesian powers Gk are stable. The graph in Figure 1(c) is not a
circulant, but it is stable, which leads to the following conjecture.
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Conjecture 1. If G is stable, then Gk is stable for all positive integers
k.

Let G;H be reversible with edge set given by S as described in
Lemma 5.4, and n is the number of vertices ofH. Then �(S) � �(G) �
(�(H)+ (k� 1)�(S))=(n+(k� 1)jSj). Hence n ��(S)+�(S)(k� 1) �
�(G) � �(H) + �(S)(k � 1). We conjecture that for n as large as in
Lemma 5.4, �(G) is always as large as possible. It is necessary that
n be large; if H is the circulant with S = f1; 5g and n = 11, then
�(S) = 1=2, but �(H) = 3=11, and 11=2 is much greater than 3.

Conjecture 2. LetG be a reversible circulant with n vertices and edge
set given by S = fa1; a2; : : : ; alg. If n > jSj+al then �(G) = bn��(S)c.

By Corollary 5.5, we have L(S) � �(Ŝ); �( ~S), Figure 2 shows that

L(f1; 2; 4g) = �(Ŝ), and L(f1; 2; 5g) = �( ~S).

Conjecture 3. L(S) = maxf�(Ŝ); �( ~S)g.
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