An introduction to SYMMETRY BREAKING IN GRAPHS

Michael O. Albertson

Department of Mathematics Smith College Northampton MA 01063 *albertson@smith.smith.edu*

Karen L. Collins

Department of Mathematics Wesleyan University Middletown, CT 06459-0128 kcollins@wesleyan.edu

This is intended to be a short summary of results that will appear elsewhere, with the goal being to reach the list of open problems at the end. Our motivation is the following:

Professor X has a key ring with n seemingly identical keys (that open different doors). We put colored labels on the keys to distinguish them. What is the minimum number of colors needed?

This first appeared in [3], and was brought to our attention by S. Wagon [2].

It translates to the following graph labeling problem: What is the minimum number of colors needed to label the vertices of C_n so that no automorphism of C_n preserves the labeling? The surprise is that three colors are needed if n = 3, 4, 5, but for $n \ge 6$, two colors suffice.

Let G be a graph with vertex set V. We define an r-distinguishing labeling to be a map $\phi : V \to \{1, 2, 3, ..., r\}$ such that for any nontrivial automorphism γ of G, there exists vertex u such that $\phi(u) \neq \phi(\gamma(u))$. We define D(G) to be equal to the minimum r such that G has an r-distinguishing labeling.

Here are some examples of the distinguishing number. Let K_n be the complete graph on n vertices and R_n be the star on n + 1 vertices. Then

 $D(K_n) = D(R_n) = n$. Let G_n be the complete graph on n vertices with a vertex of degree one attached to each vertex in the complete graph (so G_n has 2n vertices. Then $D(G_n) = \lceil \sqrt{n} \rceil$, since G_n is distinguished when every leaf edge is colored distinctly. Let $L(K_n)$ be the line graph of K_n . Then by exhaustion, $L(K_3) = L(K_4) = L(K_5) = 3$, but an elegant proof by L. Lovász shows $L(K_n) = 2$ for $n \ge 6$.

Figure 1 3-distinguishing labelings of G_5 and the complement of $L(K_5)$, the Petersen graph, P.

Now K_n , R_n , G_n and $L(K_n)$ have different distinguishing numbers, but for $n \geq 5$, they all have automorphism group S_n . This leads us to make the following definition. Let Γ be a group. Then define

 $D(\Gamma) = \{r \mid \text{there exists a graph } G \text{ such that } Aut(G) \cong \Gamma \text{ and } D(G) = r.\}$

Then $D(\Gamma) = \{1\}$ if and only if Γ is trivial. We show in [1] that (i) If Γ is abelian, then $D(\Gamma) = 2$; (ii) If Γ is dihedral, then $D(\Gamma)$ is either $\{2\}$ or $\{2,3\}$; (iii) For any Γ , $2 \in D(\Gamma)$; and (iv) $D(S_4) = \{2,4\}$.

We are interested in bounds on the size of the largest element of $D(\Gamma)$. In [1], we show that this is less than or equal to the length of the longest chain of increasing subgroups of Γ . Another bound, inspired by D. Kleitman, shows that the largest element of $D(\Gamma) \leq k$ if the order of $\Gamma \leq k!$. This proves, for example, that the largest element of $D(S_n)$ is n.

We are also interested in bounds on the distinguishing number of graph. In this direction, we have shown that if G is regular of degree j, then $D(G) \leq j + 1$. For example, $D(K_4) = 4$, but D(P) = 3.

Another interesting question that arises is the pattern of the distinguishing number for graph families. For instance, let C_n be the cycle on n vertices,

then the sequence $D(C_n)$, starting with, n = 3 is 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, ...Similarly, let Q_n be the *n*-dimensional cube, then the sequence $D(Q_n)$, starting with n = 2, is 3, 3, 3, 2, 2, 2, 2, 2, 2, ..., which was proven independently by E. Friedgut; J. Smith; C. Tardif and G. Hahn. In contrast, A. Russell has shown us an infinite family of graphs, all with the same automorphism group, that all have distinguishing number 3; and we have discovered a family of cubic graphs (with increasing automorphism groups) which all have distinguishing number 3.

We had previously asked if $|G| \ge |Aut(G)|$, and G was a graph with no 1-orbits, then was it the case that D(G) must be 2? However, A. Russell's example mentioned above shows that this need not be true.

Open Questions

- 1. Is there a family of 4-regular graphs that each have distinguishing number 4?
- 2. Is there a family of 3-connected cubic graphs that each have distinguishing number 3?
- 3. Is there a family of graphs whose distinguishing numbers grow to k (for any integer $k \ge 4$) and then go back down to 2?
- 4. What is $D(S_n)$? We know 2, $\lceil \sqrt{n} \rceil$, *n* are all contained in $D(S_n)$ and that *n* is the largest element in $D(S_n)$. Does $D(S_5)$ contain 4? We conjecture that, in general, $n 1 \notin D(S_n)$.
- 5. We conjecture that there is no group Γ such that $D(\Gamma) = \{2, 3, 4\}$.
- 6. We conjecture that any graph G such that $Aut(G) \cong S_n$ and D(G) = n must have a vertex orbit of size n which forms a complete subgraph.

References

[1] M. O. Albertson and K. L. Collins, Symmetry Breaking in Graphs, preprint.

- [2] J. Konhauser, D. Velleman, and S. Wagon, Which Way Did the Bicycle Go?, Dolciani series, Mathematical Association of America, Washington, D.C. (1996).
- [3] Frank Rubin, Problem 729 in Journal of Recreational Mathematics, volume 11, (solution in volume 12, 1980), p. 128, 1979.