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This paper examines the effect of a graph homomorphism upon the chromatic difterence
sequence of a graph. Our principal result (Theorem 2) provides necessary conditions for the
existence of a homomorphism onto a prescribed target. As a consequence we note that iterated
cartesian products of the Petersen graph form an infinite family of vertex transitive graphs no
one of which 18 the homomorphic image of any other. We also prove that there 15 a unique
minimal element in the homomorphism order of 3-chromatic graphs with non-monotonic
chromatic difference sequences (Theorem 1). We include a brief guide to some recent papers on
eraph homomorphisms.

A homomorphism f from a graph G to a graph H 1s a mapping from the vertex
set of G (denoted by V(G)) to the vertex set of H which preserves edges, 1.e., if
(u, v) 1s an edge in G, then (f(u), f(v)) 1s an edge in H. If in addition { 1s onto
V(H) and each edge in H 1s the image of some edge in G, then f is said to be
onto and H i1s called a homomorphic image of G. We define the homomorphism
order = on the set of fimite connected g¢raphs as G =H 1if there exists a
homomorphism which maps G onto H. Graph colorings provide the most
common examples of homomorphisms: an r-coloring of (G 1s just a homomorph-
iIsm to the r-clique. As a further example note that identifying the antipodal
vertices of a dodecahedron 1s a homomorphism onto the Petersen graph. There 1s
no homomorphism from the Petersen graph to the 5-cycle as any such mapping
must 1dentify two non adjacent vertices which necessarily produces a triangle.

Graph homomorphisms have arisen separately in three main areas. However,
most investigators seem to be unaware of work outside their own area. We
present several basic references. The earliest appcarance of graph homomorph-
1Isms was 1n the categorical work of the Prague school. A typical result here is that
given any monoid M, there 1s a graph (cubic graph, k-chromatic graph, etc.)
whose endomorphism monoid is M [6]. Computer scientists who study formal
languages know of graph homomorphisms in the guise of interprectations of
grammars [9-13, 16]; see Salomaa’s lovely monograph [ 13]. A typical result from

this area is that given any two (homomorphism) minimal graphs each with more
than one edge, then there exists a minimal graph which is naturally between the
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two [16]. Here the order is provided by homomorphism into. To decide whether a
eraph is 3-colorable 1s, of course, one of the classic NP-complete problems. It 1s
not surprising that this result has been extended to more general targets. Specific-
ally, Maurer, Sudborough, and Welzl have shown that given a fixed odd cycle 1t 1s
NP-complete to decide if there exists a homomorphism from a graph G to the
odd cycle [11]. They conjecture that this result holds for any homomorphism
minimal target with more than one edge. Vesztergombi has shown that there
oxists a homomorphism from a graph G onto the 5-cycle if and only if the
chromatic number of the strong product of G and the 5-cycle equals 5 [ 14, 15].

Given a graph G, the chromatic difference sequence of G, denoted by
CDS(G) = a(l), a(2),..., is defined for 1 = 1,2,... by

L
Z a(j)=alt, G)=alt)= maximum # of vertices 1n an induced
i=1

t-colorable subgraph of (.

This is a generalization of the antichain partition sequence for posets explored by
Greene and Kleitman [4, 5]. Albertson and Berman have provided necessary and
<ufficient conditions for a sequence of no mMore than 4 terms to be the CDS of
some graph [1]. As examples the CDS of the 5-cycle is 2, 2, 1 while the CDS of
the Petersen graph is 4, 3, 3. There 1s a unique graph D shown 1n Fig. 1 whose

CDS i1s 3, 1, 2.
I(A)

[(BY H(AY KC)
Fig. 1.

Theorem 1. If CDS(G)=al(l), a(?). a(3) and a(2)<<a(3), then there exists a
homomorphism from G onto D.

Proof. Let A, B, and C be the color classes in a fixed 3-coloring of G. Fix a
maximum independent set [ and let H=G I. Denote by I(A) those vertices in [
which are colored A by the fixed 3-coloring. Denote by H(A) those vertices in H
which are colored A by the fixed 3-coloring. Similarly define I(B), H(B), I1(C),
and H(C). The homomorphism f from G to D is indicated by labels assigned to
the vertices of D in Fig. 1. Since T 18 independent and A, B, and C are color
classes, f(G) is a subgraph of D. It remains to show that f is a homomorphism
onto D. If H were 2-colorable, then a largest color class of H together with I
would provide a 2-colorable subgraph of G which would be large enough to prove
that a(2)=a(3). Thus H 18 3_chromatic and cach of H(A), H(B), and H(C) 18
not empty. Further the edges in D joining these three vertices must be images of
edges in G or H would be 7_colorable. Next we show that I(C) 1s not empty. b
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I(C) were empty, since I 18 a maximum independent set
a(1) = [ I(A)+[1(B)].

Since a(1)+a(2)=[I(A)|+|I(B)|+|H(A)|+|H(B)|,
a(2)=|H(A)|+|H(B)|.

Since a(1)+a(2)=|I(A)|+|I(B)|+|H(C),
a(2Q)=|H(C)|.

But
H(A)|+ |H(B)|+|H(C)| = a(2)+ a(3)

>2a(2)={H(A)| + [H(B)|+|H(C)|.

Similarly I{B) and I(A) are not empty. Finally we need to show that every edge
in D 1s the image of some edge in G. We will actually show more. Suppose that
I{C) does not contain a vertex which is joined to both some vertex in H(A) and
some vertex in H(B). Let I(C, A) denote those vertices in I(C) which are
adjacent to no vertex in H(A). Similarly define I(C, B). Clearly I(C) 1s the union
of I(C, A) and I{C, B). Both I{AYUH(A)UI(C, A) and I(B)UH(BYU I(C, B)
torm independent sets of vertices. Thus

a(1)+a2)=|V(G)|- |H(C)|.

Consequently a(3)=<<|H(C)|.
Since I and H(C) together form a 2-colorable subgraph of G,

a(2)=|H(C)|.

Thus 1t D is not a homomorphic image of G, then a(2):=a(3).

Suppose there exists a homomorphism from G to H. By definition, the inverse
image of an independent set in H is independent in G. Thus any coloring of H
pulls back to a coloring of G. One can interpret this remark as saving that a
necessary condition for the existence of a homorphism from G to H is that the
chromatic number of H must be at least as large as the chromatic number of G.
Our principal result is an extension of this nccessary condition to chromatic
difference sequences. For convenience we define the normalized chromatic
difference sequence of a graph G, denoted NCDS(G). If CDS(G)=
a(l),a(2),..., then NCDS(G)=c(1), c(2),... where c¢(j) 1s defined to be
a(j)/{V(G)|. The purpose of this is to allow comparisons using the dominance
relation. Given two sequences b(1), b(2),...,b(r) and d(1),d(2),. ... d(r) the
sequence of b’s is said to dominate the sequence of d’s if

2 b(j)= 2, d(j)

for t=1,2,...,(r—1) and equality holds for t — r. We recommend Marshall and
Olkin’s treatise to the interested reader [8].
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Theorem 2 (The no-homomorphism lemma). If there exists a homomorphism from
G to H and H is vertex transitive, then NCDS(G) dominates NCDS(H).

Proof. We begin by simplifying some of the notation introduced above. Let a((r)
denote the maximum number of vertices in a (-colorable induced subgraph of G.
To show that NCDS(G) dominates NCDS(H), we need to show that

«(G)/|V(G)| = aH)/|V(H)I.

Suppose (N, I(2), ..., I(p) are all of the maximum ¢-colorable induced sub-
oraphs of H. Denote by m the number of these subgraphs which contain a fixed
vertex x. Since H is vertex transitive m is well defined. We can ¢€Xpress

a(H)Y/|V(H)| explicitly:

P

pa(H)= L (D= Y L kNG

=1 i=1 xin V(H)

= L i\«’fﬁl(_mzw(H)W-

xinV(H) j=1

Thus a(H)/|V(H)| = m/p. Next we perform a <imilar trick on G. Let L(j) denote
the inverse image of I(j) under the homomorphism f. As previously noted since
I(j) is an induced t-colorable subgraph of H, L(j) is an mnduced (-colorable
subgraph of G. Note 1t 1s not necessarily the case that L(j) 1s a maximum
i-colorable induced subgraph of G. nor 1s .+ the case that there are exactly p such

subgraphs of G.

a(G)= Y IL(H=2 L xOLG)
=1

i=1 xin V(G)

P

-3 Y renrgi=X i @IknTo)

=1 xin VIH) ;=1 x i VIH)
p | -
_ Y Y fwlknrl= X el 4 k0o
xin V(IHY 1=1 x in VIH) r—1
=|V(G)| m.

Hence a(G)/\V(G)=m/p = o(HH/|VH)]. U

Here is an example of how the no-homomorphism lemma can work. There 18
no homomorphism from the Petersen graph to the S-cycle since the NCDS of the
5-cycle is 0.4, 0.4, 0.2 and the NCDS of the Petersen graph is 0.4, 0.3, 0.3. To see
that vertex transitivity is necessary let G be the 5-cycle and H be the triangle with
a pendant vertex. Clearly G folds to H (a fold 1s just a special type of
homomorphism; see [3]), yet the dominance relation doesn’t hold.

Remark. The proof of the no-homomorphism lemma 1is sufficiently gencral to
apply to other invariants of the graph. As an example let 8(t. G) denote the
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maximum number of vertices in an induced subgraph of G which contains no
t-chique. Since a t-colorable subgraph of G necessarily contains no (t + 1)-clique,
S(t+1, G)=al(r, G). It can be shown, analogously to the above, that if there
exists a homomorphism from a graph G onto a vertex transitive graph H, then

(1, GH/|V(G)H|=6(t, H)/|V(H)|.

We next use the no-homomorphism lemma to show the existence of an infinite
family of 3-chromatic graphs no one of which is the homomorphic image of any
other. Given graphs H and K the cartesian product of H and K, denoted by
HXK has VIHxK)= V(H)x V(K). Edges in the product are given by (u, v) ~
(x, y) if either u=x and v~y or u~x and v =v. Let P(1) denote the Petersen
araph. Set P(n) equal to the cartesian product of P(1) with P(n —1).

Theorem 3. For any r>s there does not exist a homomorphism from P(r) onto
P(s).

Proof. Since the Petersen graph is vertex transitive so is P(s). It suffices to show
that the NCDS(P(r)) does not dominatec the NCDS(P(s)). This follows im-
mediately from the claim that

NCDS(P(r)) = 1/3((1 +2/10 % ), (1 = 1/10 s p), (1 — 1/10 = r)).
This 18 equivalent to the claim that CDS(P(r)) = a(1), a(2), a(3) where a(l)=

(10 #+ r+2)/3 and a(2)= (10 *+* r—1)/3=a(3). The proof of this consists of two
parts. First we produce a 3-coloring of P(r) which shows that CDS(P(r)) domi-
nates a(l), a(2), a(3). Assume that we have 3-colorings of P(1) and P(r— 1) fixed.
If x=(u, v)is a vertex in P(r) set the color of x equal to the color of u plus the
color of v (mod 3). It 1s straightforward to check that adjacent vertices in P(r) are
assigned different colors. Next we must show that the largest independent set in
P(r) cannot contain more than a{1) vertices. A maximum independent set in P(r)
can be thought of as 10 independent sets in P(r—1). We use induction to note
that the largest independent set in P(r—~ 1) has no more than (10 =% (r— 1)+ 2)/3
vertices. There can be no more than four copies of P(r— 1) which have indepen-
dent sets this large. The remaining six copies of P(r — 1) can have independent sets
of size no more than (10 *x (r—1) -1)/3. Thus the independence number of P(r)
18 no more than a(l). The proof that the largest 2-colorable subgraph of P(r)

contains no more than a(l)+ a(2) vertices is similar.

We obtain a minor strengthening of the above theorem by noting that since the
Petersen graph 1s rigid, i.e., it has no endomorphisms which are not automorph-
1sms, so is P(s). Consequently there cannot exist a homomorphism from P(7) into
P(s).

Sometimes a cartesian product of graphs will map to one of its factors. For
cxample the cartesian product of two 5-cycles maps to the 5-cycle. Infinite
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families of 3-chromatic graphs which are incomparable in the homomorphism
order have been constructed [7]. However, previous constructions are not so easy
and elegant and do not produce transitive graphs.

Theorem 2 inspired us to investigate the NCDS’ of vertex transitive graphs. We
ofter the following:

Conjecture. If G 1s vertex transitive, then NCDS(G) 1s monotonic.

This conjecture has not been verified even for the circulants. {(See {2] for a
summary of what 1s known about these graphs.) One might suspect that Theorem
1 would provide a method of proof of this conjecture for 3-chromatic graphs.
However since D is culerian there exists a homomorphism from the 9-cycle
onto D.
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