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Abstract

The special properties of planar posets have been studied, partic-

ularly in the 1970's by I. Rival and others. More recently, the con-

nection between posets, their corresponding polynomial rings and cor-

responding simplicial complexes has been studied by R. Stanley and

others. This paper, using work of A. Bj�orner, provides a connection

between the two bodies of work, by characterizing when planar posets

are Cohen-Macaulay. Planar posets are lattices when they contain a

greatest and a least element. We show that a �nite planar lattice is

lexicographically shellable and therefore Cohen-Macaulay i� it is rank-

connected.

Every poset corresponds to a simplicial complex, called the order com-
plex, de�ned by taking chains of the poset to be faces of the simplicial
complex. We de�ne a face of a simplicial complex to include both interior
and boundary. A pure, �nite simplicial complex is shellable if its maximal
faces (facets) can be ordered F1; F2; : : : ; Fn in such a way that Fk\([

k�1
i=1 Fi)

is a nonempty union of maximal proper faces of Fk for 2 � k � n. Shellable
triangulations of spheres and balls are discussed in [7]. A poset is said to be
shellable if its order complex is shellable.

Let k be a �eld. Then with every poset P there is also associated a
polynomial ring k(P ) whose variables correspond to the vertices of the poset,
in which a product of two or more variables is zero if and only if it contains
an independent set of vertices of the poset. Thus it is possible to ask if
this ring is Cohen-Macaulay (C-M); i.e., if the depth of k(P ) is equal to the
(Krull) dimension of k(P ). See [19] for background. (The Krull dimension
of a polynomial ring is di�erent from the combinatorial de�nition of the
dimension of a poset. See de�nition below.)

Let f be a face in a simplicial complex C, and link(f) be the subcomplex
of C consisting of the set of faces g in C such that f [ g is a face in C and
f \g = ;. The topological dimension of a simplicial complex is de�ned to be
one less than the size of its largest face. Then a simplicial complex is de�ned
to be C-M when for every face f in the complex C the reduced homology
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of link(f) is zero except in the term ~Hn(f ; k), where n is the topological
dimension of link(f). Reisner's theorem states that the polynomial ring of a
poset is C-M i� the simplicial complex of the poset is C-M [15]. See [19] for
a introduction to the combinatorics of order complexes and their homology.

In a poset P , an element y covers x if y > x and there is no z such
that y > z > x. The diagram of a poset is a drawing of the vertices and
covering relations of the poset such that if y covers x, then y appears above
x in the diagram, and there is an edge drawn from x to y. A poset is said to
be planar if its diagram can be drawn in the plane with straight edges and
without crossings. We say that a poset with a unique greatest element and
a unique least element is a bounded poset. We call the greatest element
1̂ and the least element 0̂. A �nite, bounded, planar poset is a lattice; see
[12].

The combinatorial dimension of a poset P is de�ned to be the least d
such that P is the intersection of d linear orders; see [13]. A �nite, bounded,
planar poset (which is a lattice) has dimension � 2, see [13] for a description
of the proof in [1]. The 0̂ and 1̂ of the poset guarantee that every pair of
elements will have a meet and a join, while uniqueness of meet and join holds
because there can be no edge crossings. There are planar posets without
0̂ and 1̂ of arbitrary dimension (see [11]) that would not be planar with 0̂
and 1̂ element added; see Figure 1 (b) and (c). Figure 1 (a) is not planar,
Figure 1 (b) is the planar 6 cycle, and Figure 1 (c) is the 6 cycle with 0̂ and
1̂ added, which is the non-planar Boolean lattice on 3 elements.
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Figure 1

A join-(meet-)irreducible element in a lattice covers (is covered by) ex-
actly one element.

A �nite, planar lattice always contains a doubly irreducible element,
i.e. an element that is both meet- and join-irreducible. In any planar
embedding of the diagram of a �nite, planar lattice, we can always �nd a
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doubly irreducible element on the outside boundary of the diagram see [2].
This fact implies that �nite planar lattices are dismantlable; see [16].

We can compare the diagrams of posets to planar graphs, by Platt's
result that a �nite, bounded poset is planar if and only if its diagram plus
an edge between 0̂ and 1̂ is a planar graph [14]. For V the number of vertices
in a graph, there is a O(V ) time algorithm to check planarity of a graph by
Hopcroft and Tarjan (see [10]). Thus, it is easy to distinguish, given a poset
and its diagram, whether or not it is a planar poset.

A poset P is ranked if for every x � y in P , every maximal chain from x

to y has the same length. A �nite, bounded poset is ranked if every maximal
chain from 0̂ to 1̂ has the same length. A �nite, bounded poset which has
every chain from 0̂ to 1̂ the same length (i.e. is ranked) is said to be graded.
The diagram of a graded, planar poset P , considered as a graph, is a leveled
planar graph; see [9]. A poset P is rank-connected if it is ranked, and
every pair of consecutive ranks, considered as a vertex-induced subgraph is
connected. Bj�orner ([4]) invented the concept of lexicographic shellability.
With this concept, he proved a conjecture of Stanley, that all supersolvable
lattices are C-M. In fact he proves that lexicographically shellable posets
are shellable, and all �nite upper semi-modular lattices are lexicographically
shellable. Shellable posets are C-M; see [18].
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Figure 2

Thus, Figure 1 (c) is distributive (and modular) hence lexicographically
shellable, while Figure 2 (a) is planar, but not rank-connected, and therefore
not lexicographically shellable. Figure 2 (b) is planar, rank-connected and
lexicographically shellable, but not upper semi-modular. The diagram of
Figure 2 (c) itself is not planar, but considered as a graph is planar. It is
rank-connected, but not lexicographically shellable. Figure 1 (a) is neither
a lattice, nor is it planar, but it is lexicographically shellable.

Let P be a graded poset. Let C(P ) equal the set of covering relations
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of P . Then P is said to be lexicographically shellable if there exists an
f : C(P )! R which is an edge labeling of the diagram with labels from the
real numbers that satis�es:

1. in every interval [x; y] of P there is a unique unre�nable chain x = x0 <

x1 < : : : < xn = y such that f(x0; x1) � f(x1; x2) � : : :� f(xn�1; xn).

2. for every interval [x; y] of P , if x = x0 < x1 < : : : < xn = y is the
unique unre�nable chain with rising labels, and if z 2 [x; y] covers x
with z 6= x1, then f(x; x1) < f(x; z).

In other words, P is lexicographically shellable if in any interval, the �rst
edge of the unique rising chain of that interval has a label strictly smaller
than all of the labels of the other edges in the interval that cover the smallest
element of the interval. Such an edge labeling f is called an EL-labelling.

De�ne a corner to be a doubly irreducible element v that is covered by
y, covers x, and has an opposite w 6= v that is covered by y and covers x.
We show that if a corner is added to any lexicographically shellable poset
then the resulting poset is lexicographically shellable.

Theorem 1 Let P be a lexicographically shellable poset. Let x < w < y be
covering relations. Then if we add the corner v, with x < v < y as covering
relations, the poset P + v is lexicographically shellable.

De�ne f : C(P )! R as an EL-labeling of P . We extend f to include v
by labeling the edge between x and v as a real number greater than f(s; x)
for every s that x covers or is covered by. We label the edge between v and
y as a real number less than f(x; v) and f(y; t) for every cover t of y. This
labeling clearly satis�es the two conditions of lexicographic shellability in
the interval [x; y]. In fact, this is an EL-labeling of P + v. For any interval
[s; t] in P + v, we have v in [s; t] if only if s � x and y � t or s = v or
v = t. If v is not in [s; t] the unique rising chain remains the same. If v is in
[s; t], and [x; y] � [s; t], then v is not part of any rising chain, since the two
edges (x; v) and (v; y) form a falling chain, and any chain containing v must
contain these two edges. If s = v, then the �rst edge in any chain from v

to t must be (v; y), and the weight of this edge is less than all covers of y,
and so the unique rising chain in [y; t] is still rising when we add (v; y). The
same idea works if t = v.

Theorem 2 Let P be a graded, planar, rank-connected poset. Then P is
lexicographically shellable.
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PROOF Baker, Fishburn and Roberts [2] have shown that a planar poset
with at least 3 vertices has at least one doubly irreducible element. First we
shall show that such an element is a corner. Then we proceed by induction.

Let P have n vertices and the ranks of P be labelled R0; R1; : : : ; Rs+1

with R0 = f0̂g, Rs+1 = f1̂g, and the labels in between in consecutive order.
Embed the diagram G of P plus the edge � between 0̂ and 1̂ in the plane.
Then erase �. We can assume that 0̂ and 1̂ are in the same face of the
embedding.

Suppose that one of the Ri, 1 � i � s, has cardinality equal to 1. Then
we can divide P into P1 = Ri [ Ri+1 [ : : : [ Rs+1 and P2 = R0 [ R1 [
: : :[Ri. Now all the vertices of P1 are greater than or equal to those in P2.
Furthermore, if we have a lexicographical shelling of P1 using real numbers
greater than a and for P2 using real numbers less than a, then we easily
obtain one for P by using the same labellings. Therefore we can assume
that no Ri has cardinality equal to 1.

Lemma 1 Let C be a cycle in G with vertex set V (C) � R0[R1[R2 : : :[Rj.
If vertex z in P has rank greater than or equal to j + 1, then z and 1̂ are
both inside of C or both outside of C.

PROOF (of lemma) Let i(z; 1̂) be a strictly rank increasing path from z to
1̂. Then i(z; 1̂) cannot cross C.

Lemma 2 Let P be graded, planar, and rank-connected. Then P has a
corner.

PROOF (of lemma) Let v 2 Rj be a doubly irreducible element on the
boundary of G, covered by y and covering x. We know v exists by [2].
Suppose that Rj contains at least two elements. Let Gj;j+1 = Rj [Rj+1 for
any 0 � j; j + 1 � s+ 1.

Let z 6= v be in Rj. Since Gj;j+1 forms a connected graph, there is a
shortest path Sj;j+1 from v to z in Gj;j+1. Sj;j+1 must contain y since it is
the only neighbor of v in Gj;j+1. Let w 6= v be the vertex adjacent to y in
Sj;j+1. If w is adjacent to x, then v is a corner and w is an opposite corner
to v.

Otherwise, let Cj�1;j be the shortest path from x to w in Gj�1;j and let
z be any vertex in Rj \ Cj�1;j . If z is adjacent to y, then z is an opposite
corner to v.

Assume that no z is adjacent to y. We show a contradiction. Then
fx; y; v; wg [ f(x; v); (v; y); (w; y)g [ Cj�1;j forms an even chordless cycle,
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which we call C1. Let i(s; t) be the rank increasing path from s to t. Then
i(0̂; x)[ i(0̂; w)[Cj�1;j forms a cycle, or a cycle with an extra edge with end
the vertex w if the neighbor of w in i(0̂; w) is the same as the neighbor of
w in Cj�1;j . Call this cycle C2. Then consider where 1̂ can be; either inside
of C1; C2 or outside of both. If 1̂ is inside of C1, then we cannot add the
edge � between 0̂ and 1̂. If 1̂ is inside of C2, then y and 1̂ are separated by
C2, a contradiction by Lemma 1. If 1̂ is outside of both C1; C2, then each
z 2 Rj \ Cj�1;j is separated from 1̂, a contradiction by Lemma 1 and the
fact that no z is adjacent to y. Therefore v is a corner of P with opposite
corner w.

We �nish the proof of Theorem 2 by induction on the number of vertices.
Clearly any chain is lexicographically shellable. Assume that every graded,
planar, rank-connected poset with 0̂ and 1̂ and n or fewer vertices is lexico-
graphically shellable. Let P be a graded, planar, rank-connected poset with
0̂ and 1̂ and n+1 vertices. Then P has a corner v by Lemma 2. Then P �v

is still graded, planar, and rank-connected. Therefore, by induction, P � v

is lexicographically shellable. By Theorem 1, P is also lexicographically
shellable.

The proof of Theorem 1 gives a polynomial time algorithm for �nding
an EL-labeling of a planar lattice.

Lemma 3 Let ~P be a poset with a face f such that the diagram of link(f)
is disconnected and the topological dimension of link(f) is at least 1. Then
~P is not C-M.

PROOF (of lemma) The zeroth component of the reduced homology of
link(f) is not zero, since link(f) has at least two components. Moreover, the
topological dimension of link(f) is greater than zero. By Reisner's theorem,
~P is not C-M (and hence not lexicographically shellable).

Theorem 3 A graded poset P that is not rank-connected is not lexicograph-
ically shellable.

PROOF (of theorem) Let the rank of 0̂ be 0 and the rank of 1̂ be d. Let S
be a subset of the ranks of P that always includes 0 and d. Let PS be the
S-rank-selected subposet of P . It is shown in [6] (Theorem 5.2) that if P is
C-M, then so is PS . Let i and i+ 1 be the consecutive ranks in P which do
not form a connected graph, and let S = f0; i; i+ 1; dg. We show that PS

is not C-M by Lemma 3 above. Choose f = f0̂; 1̂g. Then link(f) is exactly
the bipartite graph between ranks i and i+ 1, which is not connected.
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Let P̂ be P with a 0̂ and 1̂ added.

Lemma 4 P is C-M if and only if P̂ is C-M.

PROOF (of lemma) Suppose that P is C-M. Both 0̂ and 1̂ are non-zero
divisors in k(P̂ ). They add two to the algebraic dimension, and depth of
k(P ) without changing anything else. Conversely, suppose P̂ is C-M. Let
f be a face in P . Then link(f) in P is equal to link(f [ f0̂; 1̂g) in P̂ .
Therefore, the reduced homology of link(f) in P is zero except for possibly
in its topological dimension.

Lemma 5 If �nite, planar poset P is ranked but not bounded, then P is
C-M if and only if P̂ is rank-connected.

PROOF (of lemma) If P̂ is rank-connected, then by Theorem 2, P̂ is lexico-
graphically shellable and C-M, hence P is C-M. If P is C-M, then P̂ is C-M.
If P̂ were not rank-connected, then P̂ would not be C-M by Theorem 3.

We give an elementary proof of the following well-known result. See for
instance, the proof of Corollary 4.2 in [19].

Theorem 4 If P is not ranked, then P is not C-M.

PROOF By Lemma 6 we can assume that P is bounded. Suppose that P
is not ranked, and let [x; y] be the interval in P with the smallest length
maximal chain that also has at least two maximal chains of di�erent lengths,
say l1 and l2. There can be no edge from a vertex in a chain of length l1 to a
vertex in a chain of length l2. If there were, we would have an interval with
a smaller length maximal chain with at least two di�erent sizes of maximal
chain. Now since there can be no edges between chains of di�erent lengths,
the subposet Q = [x; y]� fx; yg must be a disconnected diagram. Clearly
the topological dimension of Q is at least 1. By Lemma 3, P is not C-M.

Theorem 5 Let P be a �nite, planar poset. Then P is C-M if and only if
P̂ is rank-connected.

PROOF If P is C-M, then P̂ is C-M by Lemma 5, and hence rank-connected
by Theorem 3. Conversely, if P̂ is rank-connected, then P̂ is lexicograph-
ically shellable by Theorem 2, hence C-M, hence P is C-M by Lemma 5.

A further re�nement of C-M lattices are admissible lattices. Admissible
lattices are lexicographically shellable, but not all lexicographically shellable
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lattices are admissible. See Stanley's paper for details [17]. We de�ne ad-
missible lattices and make a conjecture. Let J be the set of join-irreducibles
of a lattice. De�ne a natural labeling ! of J to be a map ! : J ! N where
N is the positive integers such that if z; w 2 J and z � w, then !(z) � !(w).
Let 
 be derived from ! by 
(x < y) = minf!(z)jz 2 J; x < x _ z � yg. A
lattice L is admissible if whenever x < y in L, there is a unique unre�nable
chain x = x0 < x1 < : : : < xm = y such that 
(x0; x1) � 
(x1; x2) � : : : �

(xm�1; xm).

Conjecture 1 A poset P which is graded, rank-connected, and planar is an
admissible lattice.
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