
On a Conjecture of Graham and Lov�asz about

Distance Matrices

Karen L. Collins
Wesleyan University, Dept. of Mathematics

Middletown, CT 06457

Abstract

In their 1978 paper \Distance Matrix Polynomials of Trees",
[4], Graham and Lov�asz proved that the coeÆcients of the char-
acteristic polynomial of the distance matrix of a tree (CPD(T ))
can be expressed in terms of the numbers of certain subforests of
the tree. This result was generalized to trees with weighted edges
by Collins, [1], in 1986. Graham and Lov�asz computed these
coeÆcients for all trees on less than 8 vertices, noticed that the
sequence of coeÆcients was unimodal with peak at the center, and
conjectured that this was always true. In this paper, we disprove
the conjecture. The coeÆcients for a star on n vertices are in-
deed unimodal with peak at

h
n
2

i
, but the coeÆcients for a path on

n vertices are unimodal with peak at n(1 � 1=
p
5).

Adjacency matrices have received a lot of attention, particularly with respect
to their characteristic polynomials (CP 's). It has only been in the last few
years that very much work has been done with distance matrices. This
is partly because adjacency matrices have many more zeroes than distance
matrices, and therefore it is easier to compute their CP 's, and partly because
even adjacency matrices themselves are not well understood. When the �rst
pair of trees (surely the simplest kind of graphs) were found that had the
same CP of adjacency matrices, it was shown that we could not so easily �nd
a mapping from the set of all trees with n vertices to the set of polynomials
of degree n. Later this desire lead to the discovery of two trees with the
same CP of distance matrices [6]. If only each tree could have associated
with it some unique polynomial; for then the set of trees would somehow
be like an algebra, and might yield information from algebraic techniques.
Unfortunately, at the moment there are no good candidates for such an
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assignment of polynomials (see [6]). Meanwhile, we seek to understand what
such classi�cations as we have discovered may tell us about trees.

Distance matrices also have arisen independently from a data communica-
tion problem studied by Graham and Pollack, [5], in 1971. See also Graham
and Lov�asz, [4], for a description of the problem.

In this paper we investigate some of the properties of the characteristic
polynomials of the distance matrices of trees. Wherever possible, we com-
pare these results with the results for adjacency matrices, in order to think
about the question of whether distance matrices do give us more information
about trees than adjacency matrices, or whether the information we get from
distance matrices is contained in the information from adjacency matrices.
For instance, we prove that coeÆcients of the CP of the distance matrix of a
path on n vertices are unimodal with peak at n(1 � 1=

p
5). Thus, the ratio

of the position of the peak in the sequence, to the number of terms in the
sequence is (1 � 1=

p
5). If we consider only the absolute values of the non-

zero terms of the sequence of coeÆcients of the CP of the adjacency matrix
of an n vertex path, its ratio of position of the peak to the number of terms
in the sequence is also (1� 1=

p
5). This also holds for stars. We conjecture

that this is always true (see Conjecture 2 at the end).
The distance matrix of a graph with n vertices is de�ned to be an n x n

matrix with ij entry the distance in the graph between vertex i and vertex
j. The adjacency matrix is an n x n matrix with ij entry 1 if vertex i and
vertex j are adjacent and 0 otherwise. It is well-known (see [2]) that we can
describe the characteristic polynomial of the adjacency matrix of a tree in
terms of the number of di�erent size matchings in a tree:

an�k = f
(�1)n+k=2 times the number of k=2matchings in T when k is even
0 otherwise

In their 1978 paper, Graham and Lov�asz show a similar (but complicated)
result for distance matrices. In her 1986 MIT thesis, Collins generalizes their
result to trees with weighted edges. For example, the determinant of the
distance matrix of a tree T with n vertices is always (�1)n�1(n � 1)2n�2.
The determinant of the distance matrix depends only on the subforests of
the tree that have one edge; since every tree has the same number of edges,
the determinants are all the same. The determinant of the distance matrix
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of a tree with edges weighted x1; x2; : : : ; xn�1 is

(�1)n�1(
n�1X
i=1

xi)
n�1Y
j=1

xj

Compare this with the case for adjacency matrices: a0 = 0 in both the
weighted and unweighted versions, unless T has an n=2 matching. But if a
tree has one n=2 matching, it can have only one; in the unweighted case, n
must be even and a0 = (�1)3n=2. In the general weighted case,

an�k = f
(�1)n+k=2

P
M w(M ); for k even

0 otherwise

whereM = aweightedmatching and w(M) =
Q
x2i over every weighted edge

xi in M . Therefore, when T has an n=2 matching, M0,

a0 = (�1)3n=2
Y

xi is in M0

x2i

Let Æk be the coeÆcient of �k in CPD(T) for tree T . In [4] it is shown
that

Æk = (�1)n�12n�k�2
X
F

AF;kNF

where F is a forest with k � 1; k or k + 1 vertices, where AF;k is a number
depending only on F and k, and where NF is the number of copies of F
contained as a subgraph in T . Let

dk = (�1)n�1Æk=2n�k�2

Then Graham and Lov�asz conjectured that the sequence d1; d2; : : : ; dn�2 is
unimodal, with peak at k = n=2. This is true for stars, but not for paths.
It is not known whether the sequence is unimodal (with varying peaks) for
general trees. (Note that dn�1 = 0 and dn = �1 always.)

Theorem 1 The coeÆcients of CPD(S) where S is a star on n vertices are
unimodal with peak at [n=2].

Proof:

CPD(S) = det

0
BBBBBBBBB@

�� 1 1 1 : : : 1
1 �� 2 2 : : : 2
1 2 �� 2 : : : 2
1 2 2 �� : : : 2
...

...
...

...
. . .

...
1 2 2 2 : : : ��

1
CCCCCCCCCA
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The coeÆcient of (��)k in CPD(S) (for a star with n vertices) is

(n�1k )det

0
BBBBBBBBB@

0 1 1 1 : : : 1
1 0 2 2 : : : 2
1 2 0 2 : : : 2
1 2 2 0 : : : 2
...

...
...

...
. . .

...
1 2 2 2 : : : 0

1
CCCCCCCCCA

| {z }
n�k

+ (n�1k�1)det

0
BBBBBBBBB@

0 2 2 2 : : : 2
2 0 2 2 : : : 2
2 2 0 2 : : : 2
2 2 2 0 : : : 2
...

...
...

...
. . .

...
2 2 2 2 : : : 0

1
CCCCCCCCCA

| {z }
n�k

For an m x m matrix,

det

0
BBBBBBBBB@

0 1 1 1 : : : 1
1 0 2 2 : : : 2
1 2 0 2 : : : 2
1 2 2 0 : : : 2
...

...
...

...
. . .

...
1 2 2 2 : : : 0

1
CCCCCCCCCA

= (�1)m�12m�2(m� 1)

and

det

0
BBBBBBBBB@

0 2 2 2 : : : 2
2 0 2 2 : : : 2
2 2 0 2 : : : 2
2 2 2 0 : : : 2
...

...
...

...
. . .

...
2 2 2 2 : : : 0

1
CCCCCCCCCA

= (�1)m�12m(m� 1)

Therefore, the coeÆcient of �k is

(�1)n(n� k � 1)2n�k�2((n�1k ) + 4(n�1k�1))

Hence dk = (n� k � 1)((n�1k ) + 4(n�1k�1)). Therefore

dk � dk�1 = (n�1k )(
n3 + n(�7k2 + 3k � 1) + 6k3 � 3k2 � 3k

n2 + n(1 � 2k) + k2 � k
)

The denominator is positive for 1 � k � n � 1. Fix n as a positive integer
greater than 1. Let P (k) = n3+n(�7k2+3k�1)+6k3�3k2�3k. The sign of
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dk� dk�1 depends on the sign of P (k). We show P (k) has one negative root,
one root near n=2 and one root that is greater than n. If k is much less than
0, the term 6k3 dominates P (k) and P (k) < 0. If k is much greater than 0,
again, 6k3 dominates and P (k) > 0. At k = 0, P (k) = n3�n > 0. Therefore
P (k) has a negative root. At k = n, P (k) = �2n < 0 and therefore P (k)
has a root greater than n. The remaining root is between 0 � k � n.

Suppose n is even, say n = 2m. Then

P (k) = 8m3 + 2m(�7k2 + 3k � 1) + 6k3 � 3k2 � k

At k = m, P (k) = 3m2� 3m > 0. At k = m+1, P (k) = �7m2+m+2 < 0.
So the peak of unimodality occurs at k = n=2.

Suppose n is odd, say n = 2m+ 1. Then

P (k) = 8m3 + 12m2 +m(�14k2 + 6k + 4) + 6k3 � 10k2 + 2k

At k = m, P (k) = 8m2+6m > 0. At k = m+1, P (k) = �2m2�4m�2 < 0.
Thus the peak of unimodality occurs at (n� 1)=2.

Remark 1 CPA(S) = (�1)n(�n � �n�2), where S is a star on n vertices.

Theorem 2 The coeÆcients of CPD(P ) where P is a path on n vertices
are unimodal with peak at n(1� 1=

p
5).

Proof: We take a description of the coeÆcients of CPD(P ) from [1]. Let
D(P ) be the distance matrix of the path P . Let D[v1; v2; : : : vk] be the k x k
submatrix of D(T ) for any tree T whose rows and columns are indexed by
v1; v2; : : : vk. Then the coeÆcient of �n�k in CPD(P ) is (for k � 2)

(�1)n�k
X

1�i1<i2<:::<ik�n
det(D[vi1; vi2; : : : vik ])

For path P , we may interpret D[vi1 ; vi2; : : : vik ] as the distance matrix of the
path P [vi1; vi2; : : : vik ] whose vertices are vi1; vi2; : : : vik and whose edges are
the k � 1 shortest distances from the set of distances between vi1; vi2; : : : vik.
Since we started with a path, P [vi1; vi2; : : : vik] is still a path and we can apply
the following theorem from [3].
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Theorem 3 (Graham, Ho�man and Hosoya) Let G be a �nite graph in
which each edge e has associated with it an arbitrary non-negative length w(e).
(The usual weight chosen for edges is w(e) = 1.) Let

di;j =minP (vi; vj)
w(P (vi; vj))

where P (vi; vj) ranges over all paths from vi to vj and w(P (vi; vj)) denotes
the sum of all edge-lengths in P (vi; vj). Let the 2-connected pieces of G be
G1; G2; : : : ; Gk. Let D(G)�1 = (d�1i;j ) and cof(D(G)) = det(D(G))

P
i;j d

�1
i;j .

Then

det(D(G)) =
kX
i=1

det(D(Gi))
Y
j 6=i

cof(D(Gj ))

Lemma 1 Æn�k =

(�1)n�12k�2
X

1�s1<s2<:::<sk�n
(s2 � s1)(s3 � s2) : : : (sk � sk�1)(sk � s1)

Proof of Lemma: Since P [vi1; vi2; : : : vik ] is a tree, its 2-connected pieces are
its edges. Therefore, by the above theorem, its determinant is �(�2)k�2
times

(s2�s1)(s3�s2) : : : (sk�sk�1)(sk�s1)((s2�s1)+(s3�s2)+ : : :+(sk�sk�1))

since the distance between si+1 and si is (si+1 � si). When we multiply this
by (�1)n�k we get the above.

Let dn�k = f(n; k) =
X

1�s1<s2<:::<sk�n
(s2 � s1)(s3 � s2) : : : (sk � sk�1)(sk � s1)

We show that dn�k = f(n; k) = (n+k�12k�1 )(k � 1)n
k
.

Lemma 2

Let g(m;k) =
X

1=s1<s2<:::<sk=m

(s2 � s1)(s3 � s2) : : : (sk � sk�1)

Then g(m;k) = (m+k�3
2k�3 ).
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Proof of Lemma: We can choose sk�1 to be n� 1, n� 2, etc. Therefore:

g(m;k) =
m�k+1X
i=1

i g(m� i; k � 1)

However, (m+k�3
2k�3 ) also satis�es this recurrence. To prove this, we use the

following formulae:
nX

m=k

(mk ) = (n+1k+1) (1)

nX
m=k

m(mk ) = (k + 1)(n+1k+2) + k(n+1k+1) (2)

Now the recurrence for (m+k�3
2k�3 ) gives:

m�k+1X
i=1

i (m+k�4�i
2k�5 ) =

m�k+1X
j=1

m�k+1X
i=j

(m+k�i�4
2k�5 )

by formula (1)

=
m�k+1X
j=1

(m+k�j�3
2k�4 )

by formula (1)
= (m+k�3

2k�3 )

It is easy to check that the initial values of g(m;k) and (m+k�3
2k�3 ) are the same.

The proof for f(n; k) is by induction on n. The values f(2; 1) = 0 and
f(2; 2) = 1 and f(n; n) = n� 1 agree with our hypothesis. Now f(n; k) also
satis�es a recurrence:

f(n; k) = f(n � 1; k) + all terms for sequences with sn = n

that is,

f(n; k) = f(n�1; k) + (n�1)g(n; k) + (n�2)g(n�1; k)+ : : :+ (k�1)g(k; k)

By induction, we have f(n; k) =

(n+k�22k�1 )(k�1)(n�1)=k + (n�1)(n+k�32k�3 ) + (n�2)(n+k�42k�3 ) + : : :+(k�1)(2k�32k�3)
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We can manipulate the terms to get

nX
m=k

(m� 1)(m+k�3
2k�3 ) =

n+k�3X
l=2k�3

(l � k + 2)( l
2k�3)

=
n+k�3X
l=2k�3

l( l
2k�3) +

n+k�3X
l=2k�3

(2� k)( l
2k�3)

Using formula (2) and (1), we can get

kf(n; k) = (k � 1)(k(n+k�22k�2 ) + (n+ 2k � 1)(n+k�22k�1 ))

and this reduces to the desired form.
Next we show that (n+k�12k�1 )(k�1)n

k
is unimodal at n=

p
5. Since f(n; k) =

dn�k, this proves our theorem. Now

f(n; k + 1)� f(n; k) =

(n+k2k+1)k
n

(k + 1)
� (n+k�12k�1 )(k � 1)

n

k
=

n(
(n+k2k+1)k

2 � (n+k�12k�1 )(k � 1)(k + 1)

k(k + 1)
) =

n

k(k + 1)
(k2(n+k2k+1)� (k2 � 1)(n+k�12k�1 )) =

n(n + k � 1)!

k(k + 1)(2k � 1)!(n� k � 1)!
(
k2(n + k)

(2k + 1)(2k)
� k2 � 1

n� k
)

Thus, the sign of f(n; k + 1)� f(n; k) depends on

kn2 � 5k3 � 2k2 + 4k + 2

(4k + 2)n � 4k2 � 2k

The denominator is always positive for 1 � k+1 � n. The numerator is zero
when

n = �
s
5k2 + 2k � 2

k
� 4
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We ignore the negative term. Where is the one remaining root? When
k + 1 = np

5
+ 1, the numerator is � 2np

5
+ 2

p
5

n
+ 4 and when k + 1 = np

5
,

the numerator is 8n2�7p5n+5p
5n�5 . So kn2 � 5k3 � 2k2 + 4k + 2 is zero when

np
5
< k + 1 < np

5
+ 1. There must be some integer in this range, say

np
5
< M < np

5
+ 1, and M will be the peak of the unimodal sequence unless

M is too close to np
5
+1. In that case, the peak of the sequence will beM�1.

Remark 2 In [4], the values of the dk's for 0 � k � n � 8 are given for

any tree T . They are all unimodal with peak at
h
n
2

i
. However, we can see

the e�ect of the 1p
5
on the coeÆcients of a path on 9 vertices demonstrated

in the following table of dk's.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
n = 2 1 0 -1
n = 3 2 6 0 -1
n = 4 3 16 20 0 -1
n = 5 4 30 70 50 0 -1
n = 6 5 48 162 224 105 0 -1
n = 7 6 70 308 630 588 196 0 -1
n = 8 7 96 520 1408 1980 1344 336 0
n = 9 8 126 810 2730 5148 5346 2772 540

Theorem 4 The coeÆcients of CPA(P) where P is a path on n vertices are
\unimodal" at n(1� 1=

p
5).

Proof of Theorem: Recall that

an�k = f
(�1)n+k=2 times the number of k=2matchings in T when k is even
0 otherwise

The number of i-matchings in a path on n vertices is (n�ii ). Therefore

an�k = f
(�1)n+k=2(n�ii )
0 otherwise

Since every other term is 0 in the sequence of a's, and since the non-
zero terms alternate in sign, we cannot really call the sequence unimodal.
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However, if we take only the non-zero terms, and take the absolute value of
the terms, the remaining sequence:

(
n�[n

2
]

[n
2
]

) : : : (n�22 ); (n� 1); 1

is unimodal, with peak at n=2(1 � 1=
p
5). Now

(n�i+1i�1 )� (n�ii ) =
(n� i)!

(i� 1)!(n� 2i)!

"
n� i+ 1

(n� 2i+ 1)(n � 2i+ 2)
� 1

i

#

= � n2 + n(3� 5i) + 5i2 � 7i+ 2

n2i+ n(3i� 4i2) + 4i3 � 6i2 + 2i

The denominator is positive for 0 � i � n=2. The numerator has roots

i =
5n+ 7 �

p
5n2 + 10n + 9

10

Since i � n=2, we take the root with the negative sign. When i = n(5�
p
5)

10 ,

the numerator is �n(7
p
5�5)+20
10 and hence negative; when i = n(5�

p
5)

10 +1, the

numerator is n(3
p
5+5)

10 and hence positive. Therefore the peak of unimodality

is the integer M such that n(5�
p
5)

10 � M � n(5�
p
5)

10 + 1, unless the value of
the numerator at M is negative. In that case, the peak of unimodality is at
M + 1. 1

Conjecture 1 (Peter Shor) The coeÆcients of CPD(T ) for any tree T
with n vertices are unimodal with peak between n=2 and n(1� 1=

p
5).

Recall that the coeÆcients of the CP of the adjacency matrix are given
by:

an�k = f
(�1)n+k=2 times the number of k=2matchings in T when k is even
0 otherwise

Thus, every other term in the sequence is zero, and the non-zero terms alter-
nate in sign. Hence the sequence of coeÆcients cannot be unimodal. How-
ever, if we take the absolute value of the non-zero terms, we have a sequence
that could be unimodal.

1The author would like to thank Mark Hovey for many useful discussions.
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Conjecture 2 The sequence ~A of the absolute values of the non-zero coef�-
cients of CPA(T ) are unimodal with peak at the \same" place as that of the
sequence ~D of the (conjectured unimodal) coef�cients of CPD(T ). That is,
let m be the number of non-zero terms in the sequence of coeÆcients of the
CP of the adjacency matrix of an n vertex tree. For any sequence S, let p(S)
be the place where the peak comes in the sequence. Then the integer closest

to p( ~A)
m

is the same as the integer closest to p( ~D)
n

.
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